A069007 Let M denote the 6 X 6 matrix with rows /1,1,1,1,1,1/1,1,1,1,1,0/1,1,1,1,0,0/1,1,1,0,0,0/1,1,0,0,0,0/1,0,0,0,0,0/ and A(n) the vector (x(n),y(n),z(n),t(n),u(n),v(n)) = M^n*A where A is the vector (1,1,1,1,1,1); then a(n) = y(n).
1, 5, 20, 85, 350, 1456, 6034, 25038, 103849, 430794, 1786960, 7412548, 30748055, 127546530, 529077571, 2194674687, 9103762600, 37763453591, 156647144355, 649790354877, 2695405055655, 11180849888139, 46379450073255
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3,6,-4,-5,1,1).
Crossrefs
Programs
-
Maple
a:= n->(Matrix(6, (i, j)->`if`(i+j>7, 0, 1))^n.<<[1$6][]>>)[2, 1]: seq(a(n), n=0..30); # Alois P. Heinz, Jun 18 2013
-
Mathematica
m = Table[ If[i + j <= 7, 1, 0], {i, 1, 6}, {j, 1, 6}]; mp[n_] := MatrixPower[m, n].m[[1]]; a[n_] := mp[n][[2]]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Jun 18 2013 *)
Formula
G.f.: (x^3+x^2-2*x-1) / (x^6+x^5-5*x^4-4*x^3+6*x^2+3*x-1). [Colin Barker, Dec 13 2012]
Extensions
Edited by Henry Bottomley, May 06 2002