cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069040 Numbers k that divide the numerator of B(2k) (the Bernoulli numbers).

Original entry on oeis.org

1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 59, 61, 65, 67, 71, 73, 77, 79, 83, 85, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119, 121, 125, 127, 131, 133, 137, 139, 143, 145, 149, 151, 155, 157, 161, 163, 167, 169, 173, 175, 179, 181
Offset: 1

Views

Author

Benoit Cloitre, Apr 03 2002

Keywords

Comments

Equivalently, k is relatively prime to the denominator of B(2k). Equivalently, there are no primes p such that p divides k and p-1 divides 2k. These equivalences follow from the von Staudt-Clausen and Sylvester-Lipschitz theorems.
The listed terms are the same as those in A070191, but the sequences are not identical. (The similarity is mostly explained by the absence of multiples of 2, 3 and 55 from both sequences.) See A070192 and A070193 for the differences.

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 3rd ed., Oxford Univ. Press, 1954.

Crossrefs

Programs

  • Maple
    A069040 := proc(n)
        option remember;
        if n=1 then
            1;
        else
            for k from procname(n-1)+1 do
                if numer(bernoulli(2*k)) mod k = 0 then
                    return k;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Jan 06 2013
  • Mathematica
    testb[n_] := Select[First/@FactorInteger[n], Mod[2n, #-1]==0&]=={}; Select[Range[200], testb]
  • PARI
    isok(k) = {my(p = factor(k)[,1]); for(i = 1, #p, if(!((2*k) % (p[i]-1)), return(0))); 1;} \\ Amiram Eldar, Apr 24 2025

Extensions

More information from Dean Hickerson, Apr 26 2002