A069040 Numbers k that divide the numerator of B(2k) (the Bernoulli numbers).
1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 59, 61, 65, 67, 71, 73, 77, 79, 83, 85, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119, 121, 125, 127, 131, 133, 137, 139, 143, 145, 149, 151, 155, 157, 161, 163, 167, 169, 173, 175, 179, 181
Offset: 1
Keywords
References
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 3rd ed., Oxford Univ. Press, 1954.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..300 from Seiichi Manyama)
- I. Sh. Slavutskii, A note on Bernoulli numbers, Journal of Number Theory, Vol. 53, No. 2 (1995), pp. 309-310.
Programs
-
Maple
A069040 := proc(n) option remember; if n=1 then 1; else for k from procname(n-1)+1 do if numer(bernoulli(2*k)) mod k = 0 then return k; end if; end do: end if; end proc: # R. J. Mathar, Jan 06 2013
-
Mathematica
testb[n_] := Select[First/@FactorInteger[n], Mod[2n, #-1]==0&]=={}; Select[Range[200], testb]
-
PARI
isok(k) = {my(p = factor(k)[,1]); for(i = 1, #p, if(!((2*k) % (p[i]-1)), return(0))); 1;} \\ Amiram Eldar, Apr 24 2025
Extensions
More information from Dean Hickerson, Apr 26 2002
Comments