cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A070192 Numbers k such that k divides the numerator of B(2k) (the Bernoulli numbers), but gcd(3k, 8^k+1) > 3.

Original entry on oeis.org

301, 737, 1505, 1655, 2107, 3197, 3311, 3913, 5117, 5159, 5219, 5719, 6275, 6923, 7385, 7513, 7525, 8107, 8275, 8729, 9331, 9581, 9835, 10535, 10849, 11137, 11585, 12341, 12529, 12943, 13301, 14003, 14147, 14749, 15953, 15985, 17759, 18361
Offset: 1

Views

Author

Benoit Cloitre and Dean Hickerson, Apr 26 2002

Keywords

Comments

Equivalently, numbers that are in A069040 but not in A070191.

Crossrefs

Programs

  • Mathematica
    testb[n_] := Select[First/@FactorInteger[n], Mod[2n, #-1]==0&]=={}; test8[n_] := GCD[3n, PowerMod[8, n, 3n]+1]==3; Select[Range[19000], testb[ # ]&&!test8[ # ]&]
  • PARI
    isA070191(k) = gcd(3*k, Mod(8, 3*k)^k + 1) == 3;
    isok(k) = {my(p = factor(k)[,1]); for(i = 1, #p, if(!((2*k) % (p[i]-1)), return(0))); !isA070191(k);} \\ Amiram Eldar, Apr 24 2025

A070193 Numbers k such that gcd(3k,8^k+1) = 3 but k does not divide the numerator of B(2k) (the Bernoulli numbers).

Original entry on oeis.org

253, 1081, 1771, 2485, 2783, 3289, 4301, 4807, 5405, 5819, 7337, 7567, 7843, 9361, 10373, 10879, 11891, 12397, 12425, 13409, 13861, 14053, 14927, 15433, 17395, 17963, 18145, 18377, 18469, 19481, 19987, 20539, 20999, 22517, 23023, 24541
Offset: 1

Views

Author

Benoit Cloitre and Dean Hickerson, Apr 26 2002

Keywords

Comments

Equivalently, numbers is in A070191 but not in A069040.

Crossrefs

Programs

  • Mathematica
    testb[n_] := Select[First/@FactorInteger[n], Mod[2n, #-1]==0&]=={}; test8[n_] := GCD[3n, PowerMod[8, n, 3n]+1]==3; Select[Range[25000], test8[ # ]&&!testb[ # ]&]
  • PARI
    isA070191(k) = gcd(3*k, Mod(8, 3*k)^k + 1) == 3;
    isok(k) = if(!isA070191(k), 0, my(p = factor(k)[,1]); for(i = 1, #p, if(!((2*k) % (p[i]-1)), return(1))); 0); \\ Amiram Eldar, Apr 24 2025

A070191 Numbers k such that gcd(3*k, 8^k+1) = 3.

Original entry on oeis.org

1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 59, 61, 65, 67, 71, 73, 77, 79, 83, 85, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119, 121, 125, 127, 131, 133, 137, 139, 143, 145, 149, 151, 155, 157, 161, 163, 167, 169, 173, 175, 179, 181
Offset: 1

Views

Author

Benoit Cloitre and Dean Hickerson, Apr 26 2002

Keywords

Comments

The listed terms are the same as those in A069040, but the sequences are not identical. (The similarity is mostly explained by the absence of multiples of 2, 3 and 55 from both sequences.) See A070192 and A070193 for the differences.
The number of terms not exceeding 10^m, for m = 1, 2, ..., are 3, 32, 325, 3244, 32468, 324667, 3246642, 32466291, 324662816, 3246627133, ... . Apparently, the asymptotic density of this sequence exists and equals 0.32466... . - Amiram Eldar, Jun 14 2022

Crossrefs

Programs

  • Mathematica
    test8[n_] := GCD[3n, PowerMod[8, n, 3n]+1]==3; Select[Range[200], test8]

A195989 Quotient of denominators of (BernoulliB(2n)/n) and BernoulliB(2n).

Original entry on oeis.org

1, 2, 3, 4, 1, 6, 1, 8, 9, 10, 1, 12, 1, 2, 3, 16, 1, 18, 1, 20, 21, 2, 1, 24, 1, 2, 27, 4, 1, 30, 1, 32, 3, 2, 1, 36, 1, 2, 3, 40, 1, 42, 1, 4, 9, 2, 1, 48, 1, 50, 3, 4, 1, 54, 11, 8, 3, 2, 1, 60, 1, 2, 63, 64, 1, 6, 1, 4, 3, 10, 1, 72, 1, 2, 3, 4, 1, 78, 1, 80, 81, 2, 1, 84
Offset: 1

Views

Author

Paul Curtz, Dec 21 2012

Keywords

Comments

The fixed points (entries equal to their index) are 1, 2, 3, 4, 6, 8, 9, 10, 12, 16, 18, 20, 21, 24, 27, 30, 32, 36, 40, 42,... See A193267.
Are the indices of the 1's, that is 1, 5, 7, 11, 13,... , the sequence A069040 (checked to be true for their first 700 entries)? This provides another link between the Bernoulli numbers.
a(10*k) = 10, 20, 30, 40, 50, 60, 10, 70, 80, 90, 100,... for k= 1, 2, 3,....

Examples

			a(1) = 6/6 =1, a(2) = 60/30 =2, a(3) =126/42 =3, a(4) = 120/30 =4, a(5) = 66/66 =1.
		

Programs

  • Magma
    [Denominator(Bernoulli(2*n)/n)/Denominator(Bernoulli(2*n)): n in [1..100]]; // Vincenzo Librandi, Mar 12 2018
  • Maple
    A195989 := proc(n)
        q1 := denom(bernoulli(2*n)/n) ;
        q2 := denom(bernoulli(2*n)) ;
        q1/q2 ;
    end proc: # R. J. Mathar, Jan 06 2013
    # Alternatively, without Bernoulli numbers:
    A195989 := proc(n) local P, F, f, divides; divides := (a,b) -> is(irem(b,a) = 0):
    P := 1; F := ifactors(2*n)[2]; for f in F do if not divides(f[1]-1, 2*n) then
    P := P*f[1]^f[2] fi od; n/P end: seq(A195989(n),n=1..84); # Peter Luschny, Mar 12 2018
  • Mathematica
    a[n_] := Denominator[ BernoulliB[2*n]/n] / Denominator[ BernoulliB[2*n]]; Table[a[n], {n, 1, 84}] (* Jean-François Alcover, Jan 04 2013 *)
  • PARI
    a(n) = my(b=bernfrac(2*n)); denominator(b/n)/denominator(b); \\ Michel Marcus, Mar 12 2018
    

Formula

a(n) = A193267(2*n)/2 = A036283(n) / A002445(n).
a(n) = n/A300711(n). - Peter Luschny, Mar 12 2018
2a(n) is the product over all prime powers p^e, where p^e is the highest power of p dividing 2n and p-1 divides 2n. - Peter Luschny, Mar 12 2018

A281648 (Numerator of Bernoulli(2*n)) read mod n.

Original entry on oeis.org

0, 1, 1, 3, 0, 5, 0, 7, 1, 9, 0, 5, 0, 7, 5, 15, 0, 11, 0, 9, 1, 11, 0, 13, 0, 13, 19, 7, 0, 19, 0, 31, 11, 17, 0, 11, 0, 19, 13, 13, 0, 37, 0, 33, 35, 23, 0, 37, 0, 39, 34, 39, 0, 11, 5, 35, 19, 29, 0, 29, 0, 31, 61, 63, 0, 55, 0, 51, 23, 21, 0, 43, 0, 37, 50, 19
Offset: 1

Views

Author

Seiichi Manyama, Jan 26 2017

Keywords

Comments

Conjecture: a(n) == n-1 (mod n) if only if n = 6, 10 or n = 2^k for k >= 0. This is true for n <= 1024. - Seiichi Manyama, Jan 27 2017

Crossrefs

Programs

  • Mathematica
    f[n_] := Mod[Numerator[BernoulliB[2 n]], n]; Array[f, 77] (* Robert G. Wilson v, Jan 26 2017 *)
  • PARI
    a(n)=numerator(bernfrac(2*n))%n \\ Charles R Greathouse IV, Jan 27 2017
  • Ruby
    def bernoulli(n)
      ary = []
      a = []
      (0..n).each{|i|
        a << 1r / (i + 1)
        i.downto(1){|j| a[j - 1] = j * (a[j - 1] - a[j])}
        ary << a[0]
      }
      ary
    end
    def A281648(n)
      a = bernoulli(2 * n)
      (1..n).map{|i| a[2 * i].numerator % i}
    end
    

Formula

a(n) = A000367(n) mod n.
Showing 1-5 of 5 results.