cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069056 Numbers k such that Sum_{d|k} d^2*mu(d) divides k^2.

Original entry on oeis.org

1, 12, 24, 36, 48, 72, 96, 108, 120, 144, 192, 216, 240, 288, 324, 336, 360, 384, 432, 480, 576, 600, 648, 672, 720, 768, 864, 960, 972, 1008, 1080, 1152, 1200, 1296, 1344, 1440, 1536, 1728, 1800, 1920, 1944, 2016, 2160, 2304, 2352, 2400, 2448, 2592, 2688
Offset: 1

Views

Author

Benoit Cloitre, Apr 07 2002

Keywords

Comments

Numbers k such that A046970(k) divides k^2. [corrected by Amiram Eldar, Apr 20 2025]
If n > 1, a(n+1) - a(n) == 0 (mod 12), so a(n+1) - a(n) = 12 for n=2,3,4,5,7,8,...; a(n+1) - a(n) = 24 for n=6,9,.... Conjecture: if c > 2 and n > 1, Sum_{d|n} d^c*mu(d) never divides n^c. Hence A063453(n) never divides n^3 for n > 1.

Crossrefs

Programs

  • Haskell
    a069056 n = a069056_list !! (n-1)
    a069056_list = filter (\x -> x ^ 2 `mod` a046970 x == 0) [1..]
    -- Reinhard Zumkeller, Jan 19 2012
  • Mathematica
    f[d_] := d^2*MoebiusMu[d]; ok[n_] := Divisible[n^2, Total[f /@ Divisors[n]]]; Select[Range[3000], ok] (* Jean-François Alcover, Nov 15 2011 *)
    q[k_] := Divisible[k^2, Times @@ ((First[#]^2-1)& /@ FactorInteger[k])]; q[1] = True; Select[Range[3000], q] (* Amiram Eldar, Apr 20 2025 *)
  • PARI
    for(n=1,1000,if(n^2%sumdiv(n,d,moebius(d)*d^2)==0,print1(n,",")))
    
  • PARI
    isok(k) = {my(f = factor(k)); !(k^2 % prod(i = 1, #f~, f[i,1]^2-1));} \\ Amiram Eldar, Apr 20 2025