cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069079 a(n) = (2*n+1)*(2*n+2)*(2*n+4)*(2*n+5).

Original entry on oeis.org

40, 504, 2160, 6160, 14040, 27720, 49504, 82080, 128520, 192280, 277200, 387504, 527800, 703080, 918720, 1180480, 1494504, 1867320, 2305840, 2817360, 3409560, 4090504, 4868640, 5752800, 6752200, 7876440, 9135504, 10539760, 12099960, 13827240, 15733120, 17829504
Offset: 0

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

References

  • Konrad Knopp, Theory and application of infinite series, Dover, p. 268

Crossrefs

Programs

  • Mathematica
    Table[16n^4+96n^3+196n^2+156n+40,{n,0,40}]
  • PARI
    my(x='x+O('x^32)); Vec(-8*(5+38*x+5*x^2)/(x-1)^5) \\ Elmo R. Oliveira, Aug 28 2025

Formula

Sum_{n>=1} 1/a(n) = 1/36 Sum_{n>=1} (-1)^n/a(n) = 5/36 - log(2)/6.
From Elmo R. Oliveira, Aug 28 2025: (Start)
G.f.: 8*(5 + 38*x + 5*x^2)/(1 - x)^5.
E.g.f.: 4*exp(x)*(10 + 116*x + 149*x^2 + 48*x^3 + 4*x^4).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = A078371(n)*A033996(n+1). (End)

Extensions

More terms from Elmo R. Oliveira, Aug 28 2025