A069124 Number of stable matchings in a certain form of Pseudo-Latin squares of order n based on Latin subsquares.
1, 2, 3, 10, 12, 32, 42, 268, 288, 656, 924, 4360, 3816, 11336, 13536, 195472, 200832, 423104, 618576, 2404960, 2506464, 6994784, 8820864, 85524160, 60669696, 145981952, 194348448, 1073479840
Offset: 1
Links
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, The Stable Matching Problem and Sudoku, arXiv:2108.02654 [math.HO], 2021.
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021.
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, The Stable Marriage Problem and Sudoku, College Math. J. (2023).
- Dan Eilers, Response to Sean A. Irvine comment regarding a(7)=42, 2025.
- Peter J. Stuckey, Kim Marriott, and Guido Tack, The MiniZinc Handbook, Listing 2.2.12, stable-marriage.mzn, Version 2.9.2, 6 March 2025.
- E. G. Thurber, Concerning the maximum number of stable matchings in the stable marriage problem, Discrete Math., 248 (2002), 195-219.
Crossrefs
Cf. A371810.
Cf. A005154 (power-of-2 Latin squares used as basis for subsquares). - Dan Eilers, May 16 2025
Extensions
Name edited by Dan Eilers, May 16 2025
Comments