A069173 Centered 22-gonal numbers.
1, 23, 67, 133, 221, 331, 463, 617, 793, 991, 1211, 1453, 1717, 2003, 2311, 2641, 2993, 3367, 3763, 4181, 4621, 5083, 5567, 6073, 6601, 7151, 7723, 8317, 8933, 9571, 10231, 10913, 11617, 12343, 13091, 13861, 14653, 15467, 16303, 17161, 18041, 18943, 19867, 20813
Offset: 1
Examples
a(5) = 221 because 11*5^2 - 11*5 + 1 = 275 - 55 + 1 = 221 For n=2, a(2)=22*2+1-22=23; n=3, a(3)=22*3+23-22=67; n=4, a(4)=22*4+67-22=133.
Links
- Ivan Panchenko, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Centered Polygonal Numbers.
- R. Yin, J. Mu, and T. Komatsu, The p-Frobenius Number for the Triple of the Generalized Star Numbers, Preprints 2024, 2024072280. See p. 2.
- Index entries for sequences related to centered polygonal numbers.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. centered polygonal numbers listed in A069190.
Programs
-
Mathematica
FoldList[#1 + #2 &, 1, 22 Range@ 45] (* Robert G. Wilson v, Feb 02 2011 *)
-
PARI
a(n)=11*n^2-11*n+1 \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = 11*n^2 - 11*n + 1.
a(n) = 22*n + a(n-1) - 22 (with a(1)=1). - Vincenzo Librandi, Aug 08 2010
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi*tan(sqrt(7/11)*Pi/2)/sqrt(77).
Sum_{n>=1} a(n)/n! = 12*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 12/e - 1. (End)
E.g.f.: exp(x)*(1 + 11 * x^2) - 1. - Nikolaos Pantelidis, Feb 06 2023
From Elmo R. Oliveira, Oct 22 2024: (Start)
G.f.: x*(1 + 20*x + x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)