A069180 F(n) and n! are relatively prime where F(n) are the Fibonacci numbers.
1, 2, 7, 11, 13, 17, 19, 22, 23, 26, 29, 31, 34, 37, 41, 43, 46, 47, 53, 58, 59, 61, 62, 67, 71, 73, 79, 82, 83, 86, 89, 94, 97, 101, 103, 106, 107, 109, 113, 118, 122, 127, 131, 134, 137, 139, 142, 146, 149, 151, 157, 163, 166, 167, 169, 173, 178, 179, 181, 191
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 200: # for all terms <= N V:= Vector(N,1): F:= proc(n) option remember; procname(n-1)+procname(n-2) end proc: F(0):= 0: F(1):= 1: K:= proc(q) local k; for k from 1 do if F(k) mod q = 0 then return k fi od end proc: p:= 1: do p:= nextprime(p); if p > N then break fi; k:= K(p); k0:= k*ceil(p/k); V[[seq(i,i=k0..N,k)]]:= 0 od: select(t -> V[t]=1, [$1..N]); # Robert Israel, May 31 2018
-
Mathematica
Select[Range[1000], CoprimeQ[Fibonacci[#], #!]&] (* Jean-François Alcover, Jun 07 2020 *)
Formula
Conjecture : a(n) = C*n*Log(n) + 0(n*Log(n)) with 0, 6 < C < 0, 7
Comments