cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069212 a(n) = Sum_{k=1..n} 3^omega(k).

Original entry on oeis.org

1, 4, 7, 10, 13, 22, 25, 28, 31, 40, 43, 52, 55, 64, 73, 76, 79, 88, 91, 100, 109, 118, 121, 130, 133, 142, 145, 154, 157, 184, 187, 190, 199, 208, 217, 226, 229, 238, 247, 256, 259, 286, 289, 298, 307, 316, 319, 328, 331, 340, 349, 358, 361, 370, 379, 388, 397
Offset: 1

Views

Author

Benoit Cloitre, Apr 14 2002

Keywords

Comments

More generally, if b is an integer =>3, Sum_{k=1..n} b^omega(k) ~ C(b)*n*log(n)^(b-1) where C(b)=1/(b-1)!*prod((1-1/p)^(b-1)*(1+(b-1)/p)).

References

  • G. Tenenbaum and Jie Wu, Cours Spécialisés No. 2: "Théorie analytique et probabiliste des nombres", Collection SMF, Ordres moyens, p. 20.
  • G. Tenenbaum, Introduction to analytic and probabilistic number theory, 3rd ed., American Mathematical Soc. (2015). See page 59.

Crossrefs

Partial sums of A074816.

Programs

  • Mathematica
    Accumulate @ Table[3^PrimeNu[n], {n, 1, 57}] (* Amiram Eldar, May 24 2020 *)
  • Python
    from sympy.ntheory.factor_ import primenu
    def A069212(n): return sum(3**primenu(m) for m in range(1,n+1)) # Chai Wah Wu, Sep 07 2023

Formula

Asymptotic formula: a(n) ~ C*n*log(n)^2 with C = (1/2) * Product_{p} ((1-1/p)^2*(1+2/p)) where the product is over all the primes.
The constant C is A065473/2. - Amiram Eldar, May 24 2020
From Ridouane Oudra, Jan 01 2021: (Start)
a(n) = Sum_{i=1..n} Sum_{j=1..n} mu(i*j)^2*floor(n/(i*j));
a(n) = Sum_{i=1..n} mu(i)^2*tau(i)*floor(n/i);
a(n) = Sum_{i=1..n} 2^Omega(i)*mu(i)^2*floor(n/i), where Omega = A001222. (End)
From Vaclav Kotesovec, Feb 16 2022: (Start)
More precise asymptotics:
Let f(s) = Product_{primes p} (1 - 3/p^(2*s) + 2/p^(3*s)), then
a(n) ~ n * (f(1)*log(n)^2/2 + log(n)*((3*gamma - 1)*f(1) + f'(1)) + f(1)*(1 - 3*gamma + 3*gamma^2 - 3*sg1) + (3*gamma - 1)*f'(1) + f''(1)/2),
where f(1) = A065473 = Product_{primes p} (1 - 3/p^2 + 2/p^3) = 0.2867474284344787341078927127898384464343318440970569956414778593366522...,
f'(1) = f(1) * Sum_{primes p} 6*log(p) / (p^2 + p - 2) = 0.8023233847630974628467999132875783526536954420333140745016349208975965...,
f''(1) = f'(1)^2/f(1) + f(1) * Sum_{primes p} -6*p*(2*p+1) * log(p)^2 / (p^2 + p - 2)^2 = -0.255987592484328884627082229528266165335336670389046663124468278519...
and gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). (End)