cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A065473 Decimal expansion of the strongly carefree constant: Product_{p prime} (1 - (3*p-2)/(p^3)).

Original entry on oeis.org

2, 8, 6, 7, 4, 7, 4, 2, 8, 4, 3, 4, 4, 7, 8, 7, 3, 4, 1, 0, 7, 8, 9, 2, 7, 1, 2, 7, 8, 9, 8, 3, 8, 4, 4, 6, 4, 3, 4, 3, 3, 1, 8, 4, 4, 0, 9, 7, 0, 5, 6, 9, 9, 5, 6, 4, 1, 4, 7, 7, 8, 5, 9, 3, 3, 6, 6, 5, 2, 2, 4, 3, 1, 3, 1, 9, 4, 3, 2, 5, 8, 2, 4, 8, 9, 1, 2, 6, 8, 2, 5, 5, 3, 7, 4, 2, 3, 7, 4, 6, 8, 5, 3, 6, 4, 7
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Comments

Also decimal expansion of the probability that an integer triple (x, y, z) is pairwise coprime. - Charles R Greathouse IV, Nov 14 2011
The probability that 2 numbers chosen at random are coprime, and both squarefree (Delange, 1969). - Amiram Eldar, Aug 04 2020

Examples

			0.2867474284344787341078927127898384...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6, p. 41.
  • Gerald Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, 3rd edition, American Mathematical Society, 2015, page 59, exercise 55 and 56.

Crossrefs

Programs

  • Mathematica
    digits = 100; NSum[-(2+(-2)^n)*PrimeZetaP[n]/n, {n, 2, Infinity}, NSumTerms -> 2 digits, WorkingPrecision -> 2 digits, Method -> "AlternatingSigns"] // Exp // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 11 2016 *)
  • PARI
    prodeulerrat(1 - (3*p-2)/(p^3)) \\ Amiram Eldar, Mar 17 2021

Formula

Equals Prod_{p prime} (1 - 1/p)^2*(1 + 2/p). - Michel Marcus, Apr 16 2016
The constant c in Sum_{k<=x} mu(k)^2 * 2^omega(k) = c * x * log(x) + O(x), where mu is A008683 and omega is A001221, and in Sum_{k<=x} 3^omega(k) = (1/2) * c * x * log(x)^2 + O(x*log(x)) (see Tenenbaum, 2015). - Amiram Eldar, May 24 2020
Equals A065472 * A227929 = A065472 / A098198. - Amiram Eldar, Aug 04 2020

Extensions

Name corrected by Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 03 2003
More digits from Vaclav Kotesovec, Dec 19 2019

A064608 Partial sums of A034444: sum of number of unitary divisors from 1 to n.

Original entry on oeis.org

1, 3, 5, 7, 9, 13, 15, 17, 19, 23, 25, 29, 31, 35, 39, 41, 43, 47, 49, 53, 57, 61, 63, 67, 69, 73, 75, 79, 81, 89, 91, 93, 97, 101, 105, 109, 111, 115, 119, 123, 125, 133, 135, 139, 143, 147, 149, 153, 155, 159, 163, 167, 169, 173, 177, 181, 185, 189, 191, 199, 201
Offset: 1

Views

Author

Labos Elemer, Sep 24 2001

Keywords

Comments

a(n) = Sum_{k<=n} 2^omega(k) where omega(k) is the number of distinct primes in the factorization of k. - Benoit Cloitre, Apr 16 2002
a(n) is the number of (p, q) lattice points that are visible from (0, 0), where p and q satisfy: p >= 1, q >= 1, p * q <= n. - Luc Rousseau, Jul 09 2017

References

  • E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Leipzig 1909 (Chelsea reprint 1953), p. 594.

Crossrefs

Programs

  • Maple
    with(numtheory): A064608:=n->add(mobius(k)^2*floor(n/k), k=1..n): seq(A064608(n), n=1..100); # Wesley Ivan Hurt, Dec 05 2015
  • Mathematica
    a[n_] := Count[Divisors@ n, d_ /; GCD[d, n/d] == 1]; Accumulate@ Array[a, {61}] (* Michael De Vlieger, Oct 21 2015, after Jean-François Alcover at A034444 *)
    Accumulate@ Array[2^PrimeNu[#] &, {61}] (* Amiram Eldar, Oct 21 2019 *)
  • PARI
    { for (n=1, 80, a=sum(k=1, n, moebius(k)^2*floor(n/k)); write("b064608.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 20 2009
    
  • PARI
    a(n)=sum(k=1,sqrtint(n),moebius(k)*(2*sum(l=1,sqrtint(n\(k*k)),n\(k*k*l))-sqrtint(n\(k*k))^2)); \\ More efficient formula for large n values (up to 10^14)
    vector(80,i,a(i)) \\ Jerome Raulin, Nov 01 2015
    
  • Python
    from sympy.ntheory.factor_ import primenu
    def A064608(n): return sum(1<Chai Wah Wu, Sep 07 2023

Formula

a(n) = a(n-1) + A034444(n) = a(n-1) + 2^A001221(n) Sum_{j=1..n} ud(j) where ud(j) = A034444(j) = 2^A001221(n).
a(n) = n*log(n)/zeta(2) + O(n) where zeta(2) = Pi^2/6. - Benoit Cloitre, Apr 16 2002
a(n) = Sum_{k=1..n} mu(k)^2*floor(n/k). - Benoit Cloitre, Apr 16 2002
Mertens's theorem (1874): a(n) = Sum_{k<=n} ud(k) = (n/Zeta(2))*(log(n) + 2*gamma - 1 - 2*Zeta'(2)/Zeta(2)) + O(sqrt(n)*log(n)), where gamma is the Euler-Mascheroni constant A001620. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Sep 07 2002
G.f.: (1/(1 - x))*Sum_{k>=1} mu(k)^2*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 03 2017

A074816 a(n) = 3^A001221(n) = 3^omega(n).

Original entry on oeis.org

1, 3, 3, 3, 3, 9, 3, 3, 3, 9, 3, 9, 3, 9, 9, 3, 3, 9, 3, 9, 9, 9, 3, 9, 3, 9, 3, 9, 3, 27, 3, 3, 9, 9, 9, 9, 3, 9, 9, 9, 3, 27, 3, 9, 9, 9, 3, 9, 3, 9, 9, 9, 3, 9, 9, 9, 9, 9, 3, 27, 3, 9, 9, 3, 9, 27, 3, 9, 9, 27, 3, 9, 3, 9, 9, 9, 9, 27, 3, 9, 3, 9, 3, 27, 9, 9, 9, 9, 3, 27, 9, 9, 9, 9, 9, 9, 3, 9, 9, 9
Offset: 1

Views

Author

Benoit Cloitre, Sep 08 2002

Keywords

Comments

Old name was: a(n) = sum(d|n, tau(d)*mu(d)^2 ).
Terms are powers of 3.
The inverse Mobius transform of A074823, as the Dirichlet g.f. is product_{primes p} (1+2*p^(-s)) and the Dirichlet g.f. of A074816 is product_{primes p} (1+2*p^(-s))/(1-p^(-s)). - R. J. Mathar, Feb 09 2011
If n is squarefree, then a(n) = #{(x, y) : x, y positive integers, lcm (x, y) = n}. See Crandall & Pomerance. - Michel Marcus, Mar 23 2016

References

  • Richard Crandall and Carl Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see Exercise 2.3 p. 108.

Crossrefs

Programs

Formula

a(n) = 3^m if n is divisible by m distinct primes. i.e., a(n)=3 if n is in A000961; a(n)=9 if n is in A007774 ...
a(n) = 3^A001221(n) = 3^omega(n). Multiplicative with a(p^e)=3. - Vladeta Jovovic, Sep 09 2002.
a(n) = tau_3(rad(n)) = A007425(A007947(n)). - Enrique Pérez Herrero, Jun 24 2010
a(n) = abs(Sum_{d|n} A000005(d^3)*mu(d)). - Enrique Pérez Herrero, Jun 28 2010
a(n) = Sum_{d|n, gcd(d, n/d) = 1} 2^omega(d) (The total number of unitary divisors of the unitary divisors of n). - Amiram Eldar, May 29 2020, Dec 27 2024
a(n) = Sum_{d1|n, d2|n} mu(d1*d2)^2. - Wesley Ivan Hurt, Feb 04 2022
Dirichlet g.f.: zeta(s)^3 * Product_{primes p} (1 - 3/p^(2*s) + 2/p^(3*s)). - Vaclav Kotesovec, Feb 16 2022

Extensions

Simpler definition at the suggestion of Michel Marcus. - N. J. A. Sloane, Mar 25 2016

A350961 a(n) = Sum_{k=1..n} 3^Omega(k).

Original entry on oeis.org

1, 4, 7, 16, 19, 28, 31, 58, 67, 76, 79, 106, 109, 118, 127, 208, 211, 238, 241, 268, 277, 286, 289, 370, 379, 388, 415, 442, 445, 472, 475, 718, 727, 736, 745, 826, 829, 838, 847, 928, 931, 958, 961, 988, 1015, 1024, 1027, 1270, 1279, 1306, 1315, 1342, 1345, 1426, 1435, 1516, 1525, 1534, 1537, 1618
Offset: 1

Views

Author

N. J. A. Sloane, Feb 06 2022

Keywords

References

  • Tenenbaum, G. (2015). Introduction to analytic and probabilistic number theory, 3rd ed., American Mathematical Soc. See page 59.

Crossrefs

Cf. A001222 (Omega), A069205, A069212. Partial sums of A165824.

Programs

  • Mathematica
    Accumulate[3^PrimeOmega[Range[100]]] (* Vaclav Kotesovec, Feb 16 2022 *)
  • Python
    from sympy.ntheory.factor_ import primeomega
    def A350961(n): return sum(3**primeomega(m) for m in range(1,n+1)) # Chai Wah Wu, Sep 07 2023

A074787 Sum of squares of the number of unitary divisors of k from 1 to n.

Original entry on oeis.org

1, 5, 9, 13, 17, 33, 37, 41, 45, 61, 65, 81, 85, 101, 117, 121, 125, 141, 145, 161, 177, 193, 197, 213, 217, 233, 237, 253, 257, 321, 325, 329, 345, 361, 377, 393, 397, 413, 429, 445, 449, 513, 517, 533, 549, 565, 569, 585, 589, 605, 621, 637, 641, 657, 673
Offset: 1

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Sep 07 2002

Keywords

Crossrefs

Equals 4*A069811(n) + 1, for n <= 29.

Programs

Formula

a(n) = Sum_{k=1..n} ud(k)^2 = Sum_{k=1..n} A034444(k)^2 . a(n) = Sum_{k=1..n} 2^(2*omega(k)) = Sum_{k=1..n} 2^(2*A001221(k)).
a(n) ~ c * n * log(n)^3, where c = (1/6) * Product_{p prime} ((1-1/p)^3*(1+3/p)) = A319592 / 6. - Amiram Eldar, Jul 02 2022
Showing 1-5 of 5 results.