cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A308042 Decimal expansion of the asymptotic mean of d_3(k)/ud_3(k), where d_3(k) is the number of ordered factorizations of k as product of 3 divisors (A007425) and ud_3(k) = 3^omega(k) is the unitary analog of d_3 (A074816).

Original entry on oeis.org

2, 2, 2, 4, 1, 6, 2, 4, 8, 3, 8, 0, 1, 8, 6, 9, 5, 8, 4, 4, 2, 1, 7, 4, 8, 8, 9, 4, 5, 4, 6, 9, 0, 0, 3, 7, 8, 5, 7, 6, 0, 0, 0, 8, 0, 8, 5, 1, 4, 2, 8, 7, 6, 4, 3, 8, 0, 4, 3, 3, 6, 2, 7, 5, 2, 8, 7, 9, 0, 8, 6, 0, 5, 3, 8, 4, 4, 8, 9, 9, 3, 9, 9, 3, 3, 5, 7
Offset: 1

Views

Author

Amiram Eldar, May 10 2019

Keywords

Examples

			2.22416248380186958442174889454690037857600080851428...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 1000; c = LinearRecurrence[{6, -16, 64/3, -32/3}, {0, 8, 32, 224/3}, m]; RealDigits[Exp[NSum[Indexed[c, n]*PrimeZetaP[n]/n/2^n, {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]
  • PARI
    prodeulerrat((1 - 1/p) * (2 + (1 - 1/p)^(-3))/3) \\ Amiram Eldar, Sep 16 2024

Formula

Equals Product_{p prime} ((1 - 1/p) * (2 + (1 - 1/p)^(-3))/3).

A065473 Decimal expansion of the strongly carefree constant: Product_{p prime} (1 - (3*p-2)/(p^3)).

Original entry on oeis.org

2, 8, 6, 7, 4, 7, 4, 2, 8, 4, 3, 4, 4, 7, 8, 7, 3, 4, 1, 0, 7, 8, 9, 2, 7, 1, 2, 7, 8, 9, 8, 3, 8, 4, 4, 6, 4, 3, 4, 3, 3, 1, 8, 4, 4, 0, 9, 7, 0, 5, 6, 9, 9, 5, 6, 4, 1, 4, 7, 7, 8, 5, 9, 3, 3, 6, 6, 5, 2, 2, 4, 3, 1, 3, 1, 9, 4, 3, 2, 5, 8, 2, 4, 8, 9, 1, 2, 6, 8, 2, 5, 5, 3, 7, 4, 2, 3, 7, 4, 6, 8, 5, 3, 6, 4, 7
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Comments

Also decimal expansion of the probability that an integer triple (x, y, z) is pairwise coprime. - Charles R Greathouse IV, Nov 14 2011
The probability that 2 numbers chosen at random are coprime, and both squarefree (Delange, 1969). - Amiram Eldar, Aug 04 2020

Examples

			0.2867474284344787341078927127898384...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6, p. 41.
  • Gerald Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, 3rd edition, American Mathematical Society, 2015, page 59, exercise 55 and 56.

Crossrefs

Programs

  • Mathematica
    digits = 100; NSum[-(2+(-2)^n)*PrimeZetaP[n]/n, {n, 2, Infinity}, NSumTerms -> 2 digits, WorkingPrecision -> 2 digits, Method -> "AlternatingSigns"] // Exp // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 11 2016 *)
  • PARI
    prodeulerrat(1 - (3*p-2)/(p^3)) \\ Amiram Eldar, Mar 17 2021

Formula

Equals Prod_{p prime} (1 - 1/p)^2*(1 + 2/p). - Michel Marcus, Apr 16 2016
The constant c in Sum_{k<=x} mu(k)^2 * 2^omega(k) = c * x * log(x) + O(x), where mu is A008683 and omega is A001221, and in Sum_{k<=x} 3^omega(k) = (1/2) * c * x * log(x)^2 + O(x*log(x)) (see Tenenbaum, 2015). - Amiram Eldar, May 24 2020
Equals A065472 * A227929 = A065472 / A098198. - Amiram Eldar, Aug 04 2020

Extensions

Name corrected by Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 03 2003
More digits from Vaclav Kotesovec, Dec 19 2019

A048785 a(0) = 0; a(n) = tau(n^3), where tau = number of divisors (A000005).

Original entry on oeis.org

0, 1, 4, 4, 7, 4, 16, 4, 10, 7, 16, 4, 28, 4, 16, 16, 13, 4, 28, 4, 28, 16, 16, 4, 40, 7, 16, 10, 28, 4, 64, 4, 16, 16, 16, 16, 49, 4, 16, 16, 40, 4, 64, 4, 28, 28, 16, 4, 52, 7, 28, 16, 28, 4, 40, 16, 40, 16, 16, 4, 112, 4, 16, 28, 19, 16, 64, 4, 28, 16
Offset: 0

Views

Author

Keywords

Comments

The inverse Mobius transform of A074816. - R. J. Mathar, Feb 09 2011
a(n) is also the number of ordered triples (i,j,k) of positive integers such that i|n, j|n, k|n and i,j,k are pairwise relatively prime. - Geoffrey Critzer, Jan 11 2015

Examples

			a(6) = 16 because there are 16 divisors of 6^3 = 216: 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 27, 36, 54, 72, 108, 216.
Also there are 16 ordered triples of divisors of 6 that are pairwise relatively prime: (1,1,1), (1,1,2), (1,1,3), (1,1,6), (1,2,1), (1,2,3), (1,3,1), (1,3,2), (1,6,1), (2,1,1), (2,1,3), (2,3,1), (3,1,1), (3,1,2), (3,2,1), (6,1,1).
		

Crossrefs

Programs

  • Maple
    seq(numtheory:-tau(n^3), n=0..100); # Robert Israel, Jan 11 2015
  • Mathematica
    Join[{0,1},Table[Product[3 k + 1, {k, FactorInteger[n][[All, 2]]}], {n, 2, 69}]] (* Geoffrey Critzer, Jan 11 2015 *)
    Join[{0},DivisorSigma[0,Range[70]^3]] (* Harvey P. Dale, Jan 23 2016 *)
  • PARI
    A048785(n) = if(!n,n,numdiv(n^3)); \\ Antti Karttunen, May 19 2017
    
  • PARI
    print1("0, "); for(n=1, 100, print1(direuler(p=2, n, (1 + 2*X)/(1 - X)^2)[n], ", ")) \\ Vaclav Kotesovec, May 15 2021
    print1("0, "); for(n=1, 100, print1(direuler(p=2, n, (1 - 3*X^2 + 2*X^3)/(1 - X)^4)[n], ", ")) \\ Vaclav Kotesovec, Aug 20 2021
    
  • Python
    from math import prod
    from sympy import factorint
    def A048785(n): return 0 if n == 0 else prod(3*e+1 for e in factorint(n).values()) # Chai Wah Wu, May 10 2022
    
  • Python
    from sympy import divisor_count
    def A048785(n): return divisor_count(n**3) # Karl-Heinz Hofmann, May 10 2022

Formula

a(n) = Sum_{d|n} 3^omega(d), where omega(x) is the number of distinct prime factors in the factorization of x. - Benoit Cloitre, Apr 14 2002
Multiplicative with a(p^e) = 3e+1. - Mitch Harris, Jun 09 2005
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(3^omega(k)/k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 26 2018
For n>0, a(n) = Sum_{d|n} mu(d)^2*tau(d)*tau(n/d). - Ridouane Oudra, Nov 18 2019
Dirichlet g.f.: zeta(s)^2 * Product_{primes p} (1 + 2/p^s). - Vaclav Kotesovec, May 15 2021
Dirichlet g.f.: zeta(s)^4 * Product_{primes p} (1 - 3/p^(2*s) + 2/p^(3*s)). - Vaclav Kotesovec, Aug 20 2021

A226602 Number of ordered triples (i,j,k) with i*j*k = n, i,j,k >= 0 and gcd(i,j,k) <= 1.

Original entry on oeis.org

1, 1, 3, 3, 6, 3, 9, 3, 9, 6, 9, 3, 18, 3, 9, 9, 12, 3, 18, 3, 18, 9, 9, 3, 27, 6, 9, 9, 18, 3, 27, 3, 15, 9, 9, 9, 36, 3, 9, 9, 27, 3, 27, 3, 18, 18, 9, 3, 36, 6, 18, 9, 18, 3, 27, 9, 27, 9, 9, 3, 54, 3, 9, 18, 18, 9, 27, 3, 18, 9, 27, 3, 54, 3, 9, 18, 18
Offset: 0

Views

Author

Robert Price, Jun 13 2013

Keywords

Comments

Note that gcd(0,m) = m for any m.
a(n) is the number of cubefree divisors summed over the divisors of n. In other words, a(n) = Sum_{d|n} A073184(d). - Geoffrey Critzer, Mar 20 2015

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n, t, g) option remember; `if`(t=0,
          `if`(igcd(n, g)=1, 1, 0), add(b(n/d, t-1,
          igcd(g, d)), d=divisors(n)))
        end:
    a:= n-> `if`(n=0, 1, b(n, 2, 0)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Mar 20 2015
  • Mathematica
    f[n_] := Length[Complement[Union[Flatten[Table[If[i*j*k == n && GCD[i, j, k] <= 1, {i, j, k}], {i, 0,n}, {j, 0, n}, {k, 0, n}], 2]], {Null}]]; Table[f[n], {n, 0, 100}]
    a[0] = a[1] = 1; a[n_] := Times @@ (3 * Last[#] & /@ FactorInteger[n]); Array[a, 100, 0] (* Amiram Eldar, Sep 14 2020 *)
  • Python
    from math import prod
    from sympy import factorint
    def A226602(n): return prod(3*e for e in factorint(n).values()) if n else 1 # Chai Wah Wu, Dec 26 2022

Formula

From Geoffrey Critzer, Mar 20 2015: (Start)
If n = p_1^e_1*p_2^e_2*...*p_r^e_r then a(n) = Product_{i=1..r} 3*e_i.
Dirichlet g.f.: zeta(s)^3/zeta(3*s). (End)
From Werner Schulte, May 13 2018: (Start)
Multiplicative with a(p^e) = 3*e, p prime and e>0.
Dirichlet inverse b(n), n>0, is multiplicative with b(1) = 1, and for p prime and e>0: b(p^e)=0 if e mod 3 = 0 otherwise b(p^e)=3*(-1)^(e mod 3).
Dirichlet convolution with A007427(n) yields A212793(n).
Dirichlet convolution with A008836(n) yields A092520(n).
Equals Dirichlet convolution of A034444(n) and A056624(n).
Equals Dirichlet convolution of A000005(n) and A212793(n). (End)
Sum_{k=1..n} a(k) ~ n/(2*Zeta(3)) * (log(n)^2 + 2*log(n) * (-1 + 3*gamma - 3*Zeta'(3)/Zeta(3)) + 2 + 6*gamma^2 - 6*sg1 + 6*Zeta'(3)/Zeta(3) + 18*Zeta'(3)^2/Zeta(3)^2 - 6*gamma*(1 + 3*Zeta'(3)/Zeta(3)) - 9*Zeta''(3)/Zeta(3)), where gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Feb 07 2019
a(n) = A005361(n) * A074816(n). - Vaclav Kotesovec, Feb 27 2023

A343443 If n = Product (p_j^k_j) then a(n) = Product (k_j + 2), with a(1) = 1.

Original entry on oeis.org

1, 3, 3, 4, 3, 9, 3, 5, 4, 9, 3, 12, 3, 9, 9, 6, 3, 12, 3, 12, 9, 9, 3, 15, 4, 9, 5, 12, 3, 27, 3, 7, 9, 9, 9, 16, 3, 9, 9, 15, 3, 27, 3, 12, 12, 9, 3, 18, 4, 12, 9, 12, 3, 15, 9, 15, 9, 9, 3, 36, 3, 9, 12, 8, 9, 27, 3, 12, 9, 27, 3, 20, 3, 9, 12, 12, 9, 27, 3, 18
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 15 2021

Keywords

Comments

Inverse Moebius transform of A056671.
a(n) depends only on the prime signature of n (see formulas). - Bernard Schott, May 03 2021

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := Times @@ ((#[[2]] + 2) & /@ FactorInteger[n]); Table[a[n], {n, 80}]
    a[n_] := Sum[If[GCD[d, n/d] == 1, DivisorSigma[0, d], 0], {d, Divisors[n]}]; Table[a[n], {n, 80}]
  • PARI
    a(n) = sumdiv(n, d, if(gcd(d, n/d)==1, numdiv(d))) \\ Andrew Howroyd, Apr 15 2021
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + X - X^2)/(1-X)^2)[n], ", ")) \\ Vaclav Kotesovec, Feb 11 2023
    
  • Python
    from math import prod
    from sympy import factorint
    def A343443(n): return prod(e+2 for e in factorint(n).values()) # Chai Wah Wu, Feb 21 2025

Formula

a(n) = 2^omega(n) * tau_3(n) / tau(n), where omega = A001221, tau = A000005 and tau_3 = A007425.
a(n) = Sum_{d|n, gcd(d, n/d) = 1} tau(d).
From Bernard Schott, May 03 2021: (Start)
a(p^k) = k+2 for p prime, or signature [k].
a(A006881(n)) = 9 for signature [1, 1].
a(A054753(n)) = 12 for signature [2, 1].
a(A065036(n)) = 15 for signature [3, 1].
a(A085986(n)) = 16 for signature [2, 2].
a(A178739(n)) = 18 for signature [4, 1].
a(A143610(n)) = 20 for signature [3, 2].
a(A007304(n)) = 27 for signature [1, 1, 1]. (End)
Dirichlet g.f.: zeta(s)^2 * Product_{primes p} (1 + 1/p^s - 1/p^(2*s)). - Vaclav Kotesovec, Feb 11 2023
From Amiram Eldar, Sep 01 2023: (Start)
a(n) = A000005(A064549(n)).
a(n) = A363194(A348018(n)). (End)

A124508 a(n) = 2^BigO(n) * 3^omega(n), where BigO = A001222 and omega = A001221, the numbers of prime factors of n with and without repetitions.

Original entry on oeis.org

1, 6, 6, 12, 6, 36, 6, 24, 12, 36, 6, 72, 6, 36, 36, 48, 6, 72, 6, 72, 36, 36, 6, 144, 12, 36, 24, 72, 6, 216, 6, 96, 36, 36, 36, 144, 6, 36, 36, 144, 6, 216, 6, 72, 72, 36, 6, 288, 12, 72, 36, 72, 6, 144, 36, 144, 36, 36, 6, 432, 6, 36, 72, 192, 36, 216, 6, 72, 36, 216, 6, 288, 6
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 04 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2^PrimeOmega[n] 3^PrimeNu[n],{n,80}] (* Harvey P. Dale, Mar 26 2013 *)
  • PARI
    a(n) = my(f = factor(n)); 2^bigomega(f) * 3^omega(f); \\ Amiram Eldar, Jul 11 2023

Formula

Multiplicative with p^e -> 3*2^e, p prime and e>0.
a(n) = A061142(n)*A074816(n) = A000079(A001222(n))*A000244(A001221(n)).
A124509 gives the range: A124509(n) = a(A124510(n)) and a(m) <> a(A124510(n)) for m < A124510(n).
For primes p, q with p <> q: a(p) = 6; a(p*q) = 36; a(p^k) = 3*2^k, k>0.
For squarefree numbers m: a(m) = 6^omega(m).
A001222(a(n)) = A001222(n)+1; A001221(a(n)) = 2 for n > 1.
A124511(n) = a(a(n)); A124512(n) = a(a(a(n))).

A069212 a(n) = Sum_{k=1..n} 3^omega(k).

Original entry on oeis.org

1, 4, 7, 10, 13, 22, 25, 28, 31, 40, 43, 52, 55, 64, 73, 76, 79, 88, 91, 100, 109, 118, 121, 130, 133, 142, 145, 154, 157, 184, 187, 190, 199, 208, 217, 226, 229, 238, 247, 256, 259, 286, 289, 298, 307, 316, 319, 328, 331, 340, 349, 358, 361, 370, 379, 388, 397
Offset: 1

Views

Author

Benoit Cloitre, Apr 14 2002

Keywords

Comments

More generally, if b is an integer =>3, Sum_{k=1..n} b^omega(k) ~ C(b)*n*log(n)^(b-1) where C(b)=1/(b-1)!*prod((1-1/p)^(b-1)*(1+(b-1)/p)).

References

  • G. Tenenbaum and Jie Wu, Cours Spécialisés No. 2: "Théorie analytique et probabiliste des nombres", Collection SMF, Ordres moyens, p. 20.
  • G. Tenenbaum, Introduction to analytic and probabilistic number theory, 3rd ed., American Mathematical Soc. (2015). See page 59.

Crossrefs

Partial sums of A074816.

Programs

  • Mathematica
    Accumulate @ Table[3^PrimeNu[n], {n, 1, 57}] (* Amiram Eldar, May 24 2020 *)
  • Python
    from sympy.ntheory.factor_ import primenu
    def A069212(n): return sum(3**primenu(m) for m in range(1,n+1)) # Chai Wah Wu, Sep 07 2023

Formula

Asymptotic formula: a(n) ~ C*n*log(n)^2 with C = (1/2) * Product_{p} ((1-1/p)^2*(1+2/p)) where the product is over all the primes.
The constant C is A065473/2. - Amiram Eldar, May 24 2020
From Ridouane Oudra, Jan 01 2021: (Start)
a(n) = Sum_{i=1..n} Sum_{j=1..n} mu(i*j)^2*floor(n/(i*j));
a(n) = Sum_{i=1..n} mu(i)^2*tau(i)*floor(n/i);
a(n) = Sum_{i=1..n} 2^Omega(i)*mu(i)^2*floor(n/i), where Omega = A001222. (End)
From Vaclav Kotesovec, Feb 16 2022: (Start)
More precise asymptotics:
Let f(s) = Product_{primes p} (1 - 3/p^(2*s) + 2/p^(3*s)), then
a(n) ~ n * (f(1)*log(n)^2/2 + log(n)*((3*gamma - 1)*f(1) + f'(1)) + f(1)*(1 - 3*gamma + 3*gamma^2 - 3*sg1) + (3*gamma - 1)*f'(1) + f''(1)/2),
where f(1) = A065473 = Product_{primes p} (1 - 3/p^2 + 2/p^3) = 0.2867474284344787341078927127898384464343318440970569956414778593366522...,
f'(1) = f(1) * Sum_{primes p} 6*log(p) / (p^2 + p - 2) = 0.8023233847630974628467999132875783526536954420333140745016349208975965...,
f''(1) = f'(1)^2/f(1) + f(1) * Sum_{primes p} -6*p*(2*p+1) * log(p)^2 / (p^2 + p - 2)^2 = -0.255987592484328884627082229528266165335336670389046663124468278519...
and gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). (End)

A082476 a(n) = Sum_{d|n} mu(d)^2*tau(d)^2.

Original entry on oeis.org

1, 5, 5, 5, 5, 25, 5, 5, 5, 25, 5, 25, 5, 25, 25, 5, 5, 25, 5, 25, 25, 25, 5, 25, 5, 25, 5, 25, 5, 125, 5, 5, 25, 25, 25, 25, 5, 25, 25, 25, 5, 125, 5, 25, 25, 25, 5, 25, 5, 25, 25, 25, 5, 25, 25, 25, 25, 25, 5, 125, 5, 25, 25, 5, 25, 125, 5, 25, 25, 125, 5, 25, 5, 25, 25, 25, 25, 125
Offset: 1

Views

Author

Benoit Cloitre, Apr 27 2003

Keywords

Comments

More generally : sum(d|n, mu(d)^2*tau(d)^m) = (2^m+1)^omega(n).

Crossrefs

Programs

  • Mathematica
    tau[1, n_] := 1; SetAttributes[tau, Listable];
    tau[k_, n_] := Plus @@ (tau[k - 1, Divisors[n]]) /; k > 1;
    A082476[n_] := Abs[DivisorSum[n, MoebiusMu[ # ]*tau[3, #^2] &]]; (* Enrique Pérez Herrero, Mar 29 2010 *)
    (* or more easy *)
    A082476[n_] := 5^PrimeNu[n] (* Enrique Pérez Herrero, Mar 29 2010 *)
  • PARI
    a(n)=5^omega(n)
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (4*X+1)/(1-X))[n], ", ")) \\ Vaclav Kotesovec, Feb 28 2023

Formula

a(n) = 5^omega(n); multiplicative with a(p^e)=5.
a(n) = abs(sum(d|n, mu(d)*tau_3(d^2))), where tau_3 is A007425. - Enrique Pérez Herrero, Mar 29 2010
a(n) = tau_5(rad(n)) = A061200(A007947(n)). - Enrique Pérez Herrero, Jun 24 2010
a(n) = A000351(A001221(n)). - Antti Karttunen, Jul 26 2017
From Vaclav Kotesovec, Feb 28 2023: (Start)
Dirichlet g.f.: Product_{primes p} (1 + 5/(p^s - 1)).
Dirichlet g.f.: zeta(s)^5 * Product_{primes p} (1 - 10/p^(2*s) + 20/p^(3*s) - 15/p^(4*s) + 4/p^(5*s)), (with a product that converges for s=1). (End)

A360997 Multiplicative with a(p^e) = e + 3.

Original entry on oeis.org

1, 4, 4, 5, 4, 16, 4, 6, 5, 16, 4, 20, 4, 16, 16, 7, 4, 20, 4, 20, 16, 16, 4, 24, 5, 16, 6, 20, 4, 64, 4, 8, 16, 16, 16, 25, 4, 16, 16, 24, 4, 64, 4, 20, 20, 16, 4, 28, 5, 20, 16, 20, 4, 24, 16, 24, 16, 16, 4, 80, 4, 16, 20, 9, 16, 64, 4, 20, 16, 64, 4, 30, 4, 16
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 28 2023

Keywords

Crossrefs

Cf. A005361 (multiplicative with a(p^e) = e), A000005 (e+1), A343443 (e+2), this sequence (e+3), A322327 (2*e), A048691 (2*e+1), A360908 (2*e-1), A226602 (3*e), A048785 (3*e+1), A360910 (3*e-1), A360909 (3*e+2), A360911 (3*e-2), A322328 (4*e), A360996 (5*e).

Programs

  • Mathematica
    g[p_, e_] := e+3; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1+2*X-2*X^2)/(1-X)^2)[n], ", "))

Formula

Dirichlet g.f.: Product_{primes p} (1 + (4*p^s - 3)/(p^s - 1)^2).
Dirichlet g.f.: zeta(s)^4 * Product_{primes p} (1 - 5/p^(2*s) + 6/p^(3*s) - 2/p^(4*s)).
From Amiram Eldar, Sep 01 2023: (Start)
a(n) = A000005(A361264(n)).
a(n) = A074816(n)*A007426(n)/A007425(n). (End)

A343442 If n = Product (p_j^k_j) then a(n) = Product (p_j + 2), with a(1) = 1.

Original entry on oeis.org

1, 4, 5, 4, 7, 20, 9, 4, 5, 28, 13, 20, 15, 36, 35, 4, 19, 20, 21, 28, 45, 52, 25, 20, 7, 60, 5, 36, 31, 140, 33, 4, 65, 76, 63, 20, 39, 84, 75, 28, 43, 180, 45, 52, 35, 100, 49, 20, 9, 28, 95, 60, 55, 20, 91, 36, 105, 124, 61, 140, 63, 132, 45, 4, 105, 260, 69, 76, 125, 252
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 15 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := Times @@ ((#[[1]] + 2) & /@ FactorInteger[n]); Table[a[n], {n, 70}]
    nmax = 70; CoefficientList[Series[Sum[MoebiusMu[k]^2 DivisorSigma[1, k] x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, moebius(d)^2 * sigma(d)) \\ Andrew Howroyd, Apr 15 2021

Formula

G.f.: Sum_{k>=1} mu(k)^2 * sigma(k) * x^k / (1 - x^k), where mu = A008683 and sigma = A000203.
a(n) = Sum_{d|n} mu(d)^2 * sigma(d).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/(12*zeta(3)) = 0.684216... (A335005). - Amiram Eldar, Nov 13 2022
a(n) = Sum_{d|n} mu(d)^2*psi(d), where psi is A001615. - Ridouane Oudra, Jul 24 2025
Showing 1-10 of 13 results. Next