A358659 Decimal expansion of the asymptotic mean of the ratio between the number of exponential unitary divisors and the number of exponential divisors.
9, 8, 4, 8, 8, 3, 6, 4, 1, 8, 7, 7, 2, 2, 8, 2, 9, 4, 0, 9, 5, 3, 7, 0, 1, 3, 8, 0, 4, 8, 9, 6, 1, 1, 3, 7, 6, 4, 7, 3, 1, 6, 3, 2, 2, 2, 2, 7, 0, 5, 8, 1, 3, 4, 5, 5, 0, 0, 6, 3, 6, 2, 3, 5, 5, 0, 2, 2, 3, 9, 6, 8, 0, 6, 5, 9, 0, 8, 2, 3, 8, 0, 0, 8, 1, 8, 9, 3, 8, 0, 9, 5, 5, 7, 4, 0, 8, 7, 6, 9, 1, 3, 3, 4, 4
Offset: 0
Examples
0.984883641877228294095370138048961137647316322227058...
Links
- Nicuşor Minculete and László Tóth, Exponential unitary divisors, Annales Univ. Sci. Budapest., Sect. Comp. Vol. 35 (2011), pp. 205-216.
Programs
-
Mathematica
r[n_] := 2^PrimeNu[n]/DivisorSigma[0, n]; $MaxExtraPrecision = 500; m = 500; f[x_] := Log[1 + Sum[x^e*(r[e] - r[e - 1]), {e, 4, m}]]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[Exp[f[1/2] + NSum[Indexed[c, k]*(PrimeZetaP[k] - 1/2^k)/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 120][[1]]
Comments