cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A367866 a(n) = Sum_{d|n} d * sigma(d) * mu(d)^2.

Original entry on oeis.org

1, 7, 13, 7, 31, 91, 57, 7, 13, 217, 133, 91, 183, 399, 403, 7, 307, 91, 381, 217, 741, 931, 553, 91, 31, 1281, 13, 399, 871, 2821, 993, 7, 1729, 2149, 1767, 91, 1407, 2667, 2379, 217, 1723, 5187, 1893, 931, 403, 3871, 2257, 91, 57, 217, 3991, 1281, 2863, 91
Offset: 1

Views

Author

Wesley Ivan Hurt, Dec 03 2023

Keywords

Comments

Inverse Möbius transform of n * sigma(n) * mu(n)^2.

Crossrefs

Cf. A000203 (sigma), A008966 (mu^2), A343442.

Programs

  • Mathematica
    Table[Sum[d*DivisorSigma[1, d]*MoebiusMu[d]^2, {d, Divisors[n]}], {n, 100}]
  • PARI
    a(n) = sumdiv(n, d, if (issquarefree(d), d*sigma(d))); \\ Michel Marcus, Dec 04 2023
    
  • Python
    from math import prod
    from sympy import primefactors
    def A367866(n): return prod(p*(p+1)+1 for p in primefactors(n)) # Chai Wah Wu, Dec 05 2023

Formula

Multiplicative with a(p^e) = p^2 + p + 1. - Amiram Eldar, Dec 04 2023
Sum_{k=1..n} a(k) ~ n^3/3. - Vaclav Kotesovec, Dec 05 2023
Showing 1-1 of 1 results.