cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A343926 a(n) is the least k such that A343443(k) = n or 0 if there is no such k.

Original entry on oeis.org

1, 0, 2, 4, 8, 16, 32, 64, 6, 256, 512, 12, 2048, 4096, 24, 36, 32768, 48, 131072, 72, 96, 1048576, 2097152, 144, 216, 16777216, 30, 288, 134217728, 432, 536870912, 576, 1536, 4294967296, 864, 60, 34359738368, 68719476736, 6144, 1728, 549755813888, 2592, 2199023255552
Offset: 1

Views

Author

Michel Marcus, May 04 2021

Keywords

Comments

The indices for which a(n) = 2^(n-2) appear to be A232803. - Michel Marcus, May 05 2021
This is true. We can check it for n <= 10. For n > 10 there are only primes and twice primes in A232803. Any number k > 10 not in A232803 can be factored as k = m*p where m, p > 2 and m >= p. We then have A343443(2^(m-2)*3^(p-2)) = m*p = k. But 2^(k-2) = 2^(m*p-2) > 2^(m-2)*3^(p-2). As m, p > 2 we have 2^(m-2)*3^(p-2) not in A232803. - David A. Corneth, May 05 2021

Crossrefs

Formula

a(n) <= 2^(n-2) for n >= 3.

A322483 The number of semi-unitary divisors of n.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 3, 2, 4, 2, 4, 2, 4, 4, 3, 2, 4, 2, 4, 4, 4, 2, 6, 2, 4, 3, 4, 2, 8, 2, 4, 4, 4, 4, 4, 2, 4, 4, 6, 2, 8, 2, 4, 4, 4, 2, 6, 2, 4, 4, 4, 2, 6, 4, 6, 4, 4, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 4, 8, 2, 6, 2, 4, 4, 4, 4, 8, 2, 6, 3, 4, 2, 8, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Dec 11 2018

Keywords

Comments

The notion of semi-unitary divisor was introduced by Chidambaraswamy in 1967.
A semi-unitary divisor of n is defined as the largest divisor d of n such that the largest divisor of d that is a unitary divisor of n/d is 1. In terms of the relation defined in A322482, d is the largest divisor of n such that T(d, n/d) = 1 (the largest divisor d that is semiprime to n/d).
The number of divisors of n that are exponentially odd numbers (A268335). - Amiram Eldar, Sep 08 2023

Examples

			The semi-unitary divisors of 8 are 1, 2, 8 (4 is not semi-unitary divisor since the largest divisor of 4 that is a unitary divisor of 8/4 = 2 is 2 > 1), and their number is 3, thus a(8) = 3.
		

References

  • J. Chidambaraswamy, Sum functions of unitary and semi-unitary divisors, J. Indian Math. Soc., Vol. 31 (1967), pp. 117-126.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Floor[(e+3)/2]; sud[n_] := If[n==1, 1, Times @@ (f @@@ FactorInteger[n])]; Array[sud, 100]
  • PARI
    a(n) = {my(f = factor(n)); for (k=1, #f~, f[k,1] = (f[k,2]+3)\2; f[k,2] = 1;); factorback(f);} \\ Michel Marcus, Dec 14 2018
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1-X) * 1/(1-X^2) * (1 + X - X^2))[n], ", ")) \\ Vaclav Kotesovec, Sep 06 2023

Formula

Multiplicative with a(p^e) = floor((e+3)/2).
a(n) <= A000005(n) with equality if and only if n is squarefree (A005117).
a(n) = Sum_{d|n} mu(d/gcd(d, n/d))^2. - Ilya Gutkovskiy, Feb 21 2020
a(n) = A000005(A019554(n)) (the number of divisors of the smallest number whose square is divisible by n). - Amiram Eldar, Sep 02 2023
From Vaclav Kotesovec, Sep 06 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s) * Product_{p prime} (1 + 1/p^s - 1/p^(2*s)).
Dirichlet g.f.: zeta(s)^2 * zeta(2*s) * Product_{p prime} (1 - 2/p^(2*s) + 1/p^(3*s)).
Let f(s) = Product_{p prime} (1 - 2/p^(2*s) + 1/p^(3*s)).
Sum_{k=1..n} a(k) ~ Pi^2 * f(1) * n / 6 * (log(n) + 2*gamma - 1 + 12*zeta'(2)/Pi^2 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - 2/p^2 + 1/p^3) = A065464 = 0.42824950567709444...,
f'(1) = f(1) * Sum_{p prime} (4*p-3) * log(p) / (p^3 - 2*p + 1) = 0.808661108949590913395... and gamma is the Euler-Mascheroni constant A001620. (End)

A056671 1 + the number of unitary and squarefree divisors of n = number of divisors of reduced squarefree part of n.

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 2, 1, 1, 4, 2, 2, 2, 4, 4, 1, 2, 2, 2, 2, 4, 4, 2, 2, 1, 4, 1, 2, 2, 8, 2, 1, 4, 4, 4, 1, 2, 4, 4, 2, 2, 8, 2, 2, 2, 4, 2, 2, 1, 2, 4, 2, 2, 2, 4, 2, 4, 4, 2, 4, 2, 4, 2, 1, 4, 8, 2, 2, 4, 8, 2, 1, 2, 4, 2, 2, 4, 8, 2, 2, 1, 4, 2, 4, 4, 4, 4, 2, 2, 4, 4, 2, 4, 4, 4, 2, 2, 2, 2, 1, 2, 8, 2, 2, 8
Offset: 1

Views

Author

Labos Elemer, Aug 10 2000

Keywords

Comments

Note that 1 is regarded as free of squares of primes and is also a square number and a unitary divisor.

Examples

			n = 252 = 2*2*3*3*7 has 18 divisors, 8 unitary and 8 squarefree divisors of which 2 are unitary and squarefree, divisors {1,7};
n = 2520 = 2*2*2*3*3*5*7 has 48 divisors, 16 unitary and 16 squarefree divisors of which {1,5,7,35} are both, thus a(2520) = 4.
a(2520) = a(2^3*3^2*5*7) = a(2^3)*a(3^2)*a(5)*a(7) = 1*1*2*2 = 4.
		

Crossrefs

Programs

  • Mathematica
    Array[DivisorSigma[0, #] &@ Denominator[#/Apply[Times, FactorInteger[#][[All, 1]]]^2] &, 105] (* or *)
    Table[DivisorSum[n, 1 &, And[SquareFreeQ@ #, CoprimeQ[#, n/#]] &], {n, 105}] (* Michael De Vlieger, Jul 19 2017 *)
    f[p_,e_] := If[e==1, 2, 1]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, May 14 2019 *)
  • PARI
    A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); } \\ Charles R Greathouse IV, Aug 13 2013
    A055231(n) = n/A057521(n);
    A056671(n) = numdiv(A055231(n));
    \\ Or:
    A055229(n) = { my(c=core(n)); gcd(c, n/c); }; \\ This function from Charles R Greathouse IV, Nov 20 2012
    A056671(n) = numdiv(core(n)/A055229(n)); \\ Antti Karttunen, Jul 19 2017
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + X - X^2)/(1-X))[n], ", ")) \\ Vaclav Kotesovec, Feb 11 2023
    
  • PARI
    a(n) = vecprod(apply(x -> if(x == 1, 2, 1), factor(n)[, 2])); \\ Amiram Eldar, Apr 15 2025
    
  • Python
    from sympy import factorint, prod
    def a(n): return 1 if n==1 else prod([2 if e==1 else 1 for p, e in factorint(n).items()])
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 19 2017
  • Scheme
    (define (A056671 n) (if (= 1 n) n (* (if (= 1 (A067029 n)) 2 1) (A056671 (A028234 n))))) ;; (After the given multiplicative formula) - Antti Karttunen, Jul 19 2017
    

Formula

a(n) = A000005(A055231(n)) = A000005(A007913(n)/A055229(n)).
Multiplicative with a(p) = 2 and a(p^e) = 1 for e > 1. a(n) = 2^A056169(n). - Vladeta Jovovic, Nov 01 2001
a(n) = A034444(n) - A056674(n). - Antti Karttunen, Jul 19 2017
From Vaclav Kotesovec, Feb 11 2023: (Start)
Dirichlet g.f.: zeta(s) * Product_{primes p} (1 + 1/p^s - 1/p^(2*s)).
Dirichlet g.f.: zeta(s)^2 * Product_{primes p} (1 - 2/p^(2*s) + 1/p^(3*s)), (with a product that converges for s=1).
Let f(s) = Product_{primes p} (1 - 2/p^(2*s) + 1/p^(3*s)), then Sum_{k=1..n} a(k) ~ n * (f(1) * (log(n) + 2*gamma - 1) + f'(1)), where f(1) = Product_{primes p} (1 - 2/p^2 + 1/p^3) = A065464 = 0.42824950567709444021876..., f'(1) = f(1) * Sum_{primes p} (4*p-3) * log(p) / (p^3 - 2*p + 1) = 0.808661108949590913395... and gamma is the Euler-Mascheroni constant A001620. (End)
a(n) = Sum_{d|n, gcd(d,n/d)=1} mu(d)^2. - Wesley Ivan Hurt, May 25 2023
a(n) = Sum_{d|n} A343443(d)*mu(n/d). - Ridouane Oudra, Dec 18 2023

A361430 Multiplicative with a(p^e) = e - 1.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 11 2023

Keywords

Comments

a(n) is the number of coreful divisors d of n such that n/d is also a coreful divisor of n (a coreful divisor d of a number n is a divisor with the same set of distinct prime factors as n, see A307958). - Amiram Eldar, Aug 15 2023

Crossrefs

Cf. A001694, A298826, A307958, A335850 (indices of records).
Cf. A005361 (multiplicative with a(p^e) = e), A000005 (e+1), A343443 (e+2), A360997 (e+3), A360908 (2*e-1), A360910 (3*e-1), A360911 (3*e-2).

Programs

  • Mathematica
    g[p_, e_] := e-1; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 200]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1 + 1/(1 - 1/X)^2)[n], ", "))
    
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = f[k,2]-1; f[k,2] = 1); factorback(f); \\ Michel Marcus, Mar 13 2023
    
  • Python
    from math import prod
    from sympy import factorint
    def A361430(n): return prod(e-1 for e in factorint(n).values()) # Chai Wah Wu, Apr 15 2025

Formula

Dirichlet g.f.: Product_{primes p} (1 + 1/(p^s - 1)^2).
Dirichlet g.f.: zeta(2*s) * zeta(3*s)^2 * Product_{primes p} (1 + 2/p^(4*s) + 2/p^(5*s) - 1/p^(6*s) - 2/p^(7*s) - 2/p^(8*s)).
Let f(s) = Product_{primes p} (1 + 2/p^(4*s) + 2/p^(5*s) - 1/p^(6*s) - 2/p^(7*s) - 2/p^(8*s)), then
Sum_{k=1..n} a(k) ~ f(1/2) * zeta(3/2)^2 * sqrt(n) + zeta(2/3) * (f(1/3) * (log(n) + 6*gamma - 3 + 2*zeta'(2/3)/zeta(2/3)) + f'(1/3)) * n^(1/3) / 3, where
f(1/2) = Product_{primes p} (1 + 2/p^2 + 2/p^(5/2) - 1/p^3 - 2/p^(7/2) - 2/p^4) = 2.20286226691565931157047065666916419062717171359087693723221239...
f(1/3) = Product_{primes p} (1 + 2/p^(4/3) + 2/p^(5/3) - 1/p^2 - 2/p^(7/3) - 2/p^(8/3)) = 6.250573144372477079986352917664218040797528021629950408099536...
f'(1/3) = f(1/3) * Sum_{primes p} (-2*(-8 + p^(1/3) + 4*p^(2/3)) * log(p) / (-2 + p^(2/3) + p - p^(5/3) + p^2)) = -90.898558294301467740374653006294640945295... and gamma is the Euler-Mascheroni constant A001620.
Conjecture: a(n) = abs(A298826(n)).
a(n) > 0 if and only if n is powerful (A001694). - Amiram Eldar, Aug 15 2023

A363194 Number of divisors of the n-th powerful number A001694(n).

Original entry on oeis.org

1, 3, 4, 3, 5, 3, 4, 6, 9, 3, 7, 12, 5, 9, 12, 3, 4, 8, 15, 3, 9, 12, 16, 9, 6, 9, 18, 3, 15, 4, 3, 12, 15, 20, 9, 9, 12, 10, 3, 21, 5, 20, 12, 9, 7, 15, 18, 3, 24, 27, 3, 12, 18, 16, 11, 9, 12, 24, 9, 9, 25, 12, 4, 12, 3, 12, 9, 9, 18, 21, 3, 28, 27, 36, 3, 15
Offset: 1

Views

Author

Amiram Eldar, May 21 2023

Keywords

Crossrefs

Similar sequences: A072048, A076400, A363195.

Programs

  • Mathematica
    DivisorSigma[0, Select[Range[3000], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 1 &]]
  • PARI
    apply(numdiv, select(ispowerful, [1..3000]))
    
  • Python
    from itertools import count, islice
    from math import prod
    from sympy import factorint
    def A363194_gen(): # generator of terms
        for n in count(1):
            f = factorint(n).values()
            if all(e>1 for e in f):
                yield prod(e+1 for e in f)
    A363194_list = list(islice(A363194_gen(),20)) # Chai Wah Wu, May 21 2023

Formula

a(n) = A000005(A001694(n)).
Sum_{A001694(k) < x} a(k) = c_1 * sqrt(x) * log(x)^2 + c_2 * sqrt(x) * log(x) + c_3 * sqrt(x) + O(x^(5/12 + eps)), where c_1, c_2 and c_3 are constants. c_1 = Product_{p prime} (1 + 4/p^(3/2) - 1/p^2 - 6/p^(5/2) + 2/p^(7/2))/8 = 0.516273682988566836609... . [corrected Sep 21 2024]
a(n) = A343443(A306458(n)). - Amiram Eldar, Sep 01 2023

A360909 Multiplicative with a(p^e) = 3*e + 2.

Original entry on oeis.org

1, 5, 5, 8, 5, 25, 5, 11, 8, 25, 5, 40, 5, 25, 25, 14, 5, 40, 5, 40, 25, 25, 5, 55, 8, 25, 11, 40, 5, 125, 5, 17, 25, 25, 25, 64, 5, 25, 25, 55, 5, 125, 5, 40, 40, 25, 5, 70, 8, 40, 25, 40, 5, 55, 25, 55, 25, 25, 5, 200, 5, 25, 40, 20, 25, 125, 5, 40, 25, 125
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 25 2023

Keywords

Crossrefs

Cf. A005361 (multiplicative with a(p^e) = e), A000005 (e+1), A343443 (e+2), A360997 (e+3), A322327 (2*e), A048691 (2*e+1), A360908 (2*e-1), A226602 (3*e), A048785 (3*e+1), A360910 (3*e-1), this sequence (3*e+2), A360911 (3*e-2), A322328 (4*e), A360996 (5*e).

Programs

  • Mathematica
    a[n_] := Times @@ ((3*Last[#] + 2) & /@ FactorInteger[n]); a[1] = 1; Array[a, 100] (* Amiram Eldar, Feb 25 2023 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1+3*X-X^2)/(1-X)^2)[n], ", "))

Formula

Dirichlet g.f.: zeta(s)^2 * Product_{primes p} (1 + 3/p^s - 1/p^(2*s)).
Dirichlet g.f.: zeta(s)^5 * Product_{primes p} (1 - 7/p^(2*s) + 11/p^(3*s) - 6/p^(4*s) + 1/p^(5*s)), (with a product that converges for s=1).
Sum_{k=1..n} a(k) ~ c * n * log(n)^4 / 24, where c = Product_{primes p} (1 - 7/p^2 + 11/p^3 - 6/p^4 + 1/p^5) = 0.091414252314317101861531055690354339957600046..., more precise (but very complicated) asymptotics can be obtained (in Mathematica notation) as Residue[Zeta[s]^5 * f[s] * n^s / s, {s, 1}], where f[s] = Product_{primes p} (1 - 7/p^(2*s) + 11/p^(3*s) - 6/p^(4*s) + 1/p^(5*s)).

A360997 Multiplicative with a(p^e) = e + 3.

Original entry on oeis.org

1, 4, 4, 5, 4, 16, 4, 6, 5, 16, 4, 20, 4, 16, 16, 7, 4, 20, 4, 20, 16, 16, 4, 24, 5, 16, 6, 20, 4, 64, 4, 8, 16, 16, 16, 25, 4, 16, 16, 24, 4, 64, 4, 20, 20, 16, 4, 28, 5, 20, 16, 20, 4, 24, 16, 24, 16, 16, 4, 80, 4, 16, 20, 9, 16, 64, 4, 20, 16, 64, 4, 30, 4, 16
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 28 2023

Keywords

Crossrefs

Cf. A005361 (multiplicative with a(p^e) = e), A000005 (e+1), A343443 (e+2), this sequence (e+3), A322327 (2*e), A048691 (2*e+1), A360908 (2*e-1), A226602 (3*e), A048785 (3*e+1), A360910 (3*e-1), A360909 (3*e+2), A360911 (3*e-2), A322328 (4*e), A360996 (5*e).

Programs

  • Mathematica
    g[p_, e_] := e+3; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1+2*X-2*X^2)/(1-X)^2)[n], ", "))

Formula

Dirichlet g.f.: Product_{primes p} (1 + (4*p^s - 3)/(p^s - 1)^2).
Dirichlet g.f.: zeta(s)^4 * Product_{primes p} (1 - 5/p^(2*s) + 6/p^(3*s) - 2/p^(4*s)).
From Amiram Eldar, Sep 01 2023: (Start)
a(n) = A000005(A361264(n)).
a(n) = A074816(n)*A007426(n)/A007425(n). (End)

A360996 Multiplicative with a(p^e) = 5*e, p prime and e > 0.

Original entry on oeis.org

1, 5, 5, 10, 5, 25, 5, 15, 10, 25, 5, 50, 5, 25, 25, 20, 5, 50, 5, 50, 25, 25, 5, 75, 10, 25, 15, 50, 5, 125, 5, 25, 25, 25, 25, 100, 5, 25, 25, 75, 5, 125, 5, 50, 50, 25, 5, 100, 10, 50, 25, 50, 5, 75, 25, 75, 25, 25, 5, 250, 5, 25, 50, 30, 25, 125, 5, 50, 25, 125, 5, 150
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 28 2023

Keywords

Crossrefs

Cf. A005361 (multiplicative with a(p^e) = e), A000005 (e+1), A343443 (e+2), A360997 (e+3), A322327 (2*e), A048691 (2*e+1), A360908 (2*e-1), A226602 (3*e), A048785 (3*e+1), A360910 (3*e-1), A360909 (3*e+2), A360911 (3*e-2), A322328 (4*e).
Cf. A082476.

Programs

  • Mathematica
    g[p_, e_] := 5*e; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1+3*X+X^2)/(1-X)^2)[n], ", "))

Formula

Dirichlet g.f.: Product_{primes p} (1 + 5*p^s/(p^s - 1)^2).
a(n) = A005361(n) * A082476(n).
Showing 1-8 of 8 results.