cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A376936 Powerful numbers divisible by cubes of 2 distinct primes.

Original entry on oeis.org

216, 432, 648, 864, 1000, 1296, 1728, 1944, 2000, 2592, 2744, 3375, 3456, 3888, 4000, 5000, 5184, 5400, 5488, 5832, 6912, 7776, 8000, 9000, 9261, 10000, 10125, 10368, 10584, 10648, 10800, 10976, 11664, 13500, 13824, 15552, 16000, 16200, 16875, 17496, 17576, 18000
Offset: 1

Views

Author

Michael De Vlieger, Oct 16 2024

Keywords

Comments

Numbers m with coreful divisors d, m/d such that neither d | m/d nor m/d | d, i.e., numbers m such that there exists a divisor pair (d, m/d) such that rad(d) = rad(m/d) but gcd(d, m/d) > 1 is neither d nor m/d, where rad = A007947. Divisors in each pair must be dissimilar and each in A126706.
Proper subset of A320966.
Contains A372695, A177493, and A162142. Does not contain A085986.

Examples

			216 is in the sequence since rad(12) | rad(18), but 12 does not divide 18 and 18 does not divide 12.
432 is a term since rad(18) | rad(24), but 18 does not divide 24 and 24 does not divide 18.
Table of coreful divisors d, a(n)/d such that neither d | a(n)/d nor a(n)/d | d for select a(n)
   n |   a(n)   divisor pairs d X a(n)/d
  ---------------------------------------------------------------------------
   1 |   216:   12 X 18;
   2 |   432:   18 X 24;
   3 |   648:   12 X 54;
   4 |   864:   24 X 36, 18 X 48;
   5 |  1000:   20 X 50;
   6 |  1296:   24 X 54;
   7 |  1728:   18 X 96, 36 X 48;
   8 |  1944:   12 X 162, 36 X 54;
   9 |  2000:   40 X 50;
  10 |  2592:   24 X 108, 48 X 54;
  11 |  2744:   28 X 98;
  12 |  3375:   45 X 75;
  13 |  3456:   18 X 192, 36 X 96, 48 X 72;
  22 |  7776:   24 X 324, 48 X 162, 54 X 144, 72 X 108;
  58 | 31104:   48 X 648, 54 X 576, 96 X 324, 108 X 288, 144 X 216, 162 X 192
		

Crossrefs

Programs

  • Mathematica
    Union@ Select[
      Flatten@ Table[a^2*b^3, {b, Surd[#, 3]}, {a, Sqrt[#/b^3]}] &[20000],
      Length@ Select[FactorInteger[#][[All, -1]], # > 2 &] >= 2 &]

Formula

Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/zeta(6) - (15/Pi^2) * (1 + Sum_{prime} 1/((p-1)*(p^2+1))) = 0.021194288968234037106579437374641326044... . - Amiram Eldar, Nov 08 2024

A360908 Multiplicative with a(p^e) = 2*e - 1.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 5, 3, 1, 1, 3, 1, 1, 1, 7, 1, 3, 1, 3, 1, 1, 1, 5, 3, 1, 5, 3, 1, 1, 1, 9, 1, 1, 1, 9, 1, 1, 1, 5, 1, 1, 1, 3, 3, 1, 1, 7, 3, 3, 1, 3, 1, 5, 1, 5, 1, 1, 1, 3, 1, 1, 3, 11, 1, 1, 1, 3, 1, 1, 1, 15, 1, 1, 3, 3, 1, 1, 1, 7, 7, 1, 1, 3, 1, 1
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 25 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ ((2*Last[#] - 1) & /@ FactorInteger[n]); a[1] = 1; Array[a, 100] (* Amiram Eldar, Feb 25 2023 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1+(1+1/X)/(1-1/X)^2))[n], ", "))
    
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1]=2*f[k,2]-1; f[k,2]=1); factorback(f); \\ Michel Marcus, Feb 25 2023

Formula

Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 2/(p^s*(p^s-1))).
Sum_{k=1..n} a(k) ~ c*n, where c = A367822 = Product_{p prime} (1 + 2/(p*(p-1))) = 3.279577150984783607372919498914633983999130708105267540952619534539808381...
a(n) = A361430(n^2). - Amiram Eldar, Feb 11 2024

A298826 a(n) = A298825(n)/n.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 2, -1, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, -2, 0, 0, 0, 0, 4, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -2
Offset: 1

Views

Author

Mats Granvik, Jan 27 2018

Keywords

Comments

From Mats Granvik, Apr 06 2019: (Start)
Positions of nonzero entries appear to be given by A001694.
The limit lim_{k->oo} Sum_{n=1..k} a(n)/n appears to converge to some number.
Sum_{n=1..30000} a(n)/n = 1.31897... This appears to be in agreement with:
(1/30000)*Sum_{n<=30000} log(A014963(n))*log(A014963(n+2)) = 1.30351...
If the limit can be proven to converge to a number greater than 1, then it is true that Sum_{n<=X} log(A014963(n))*log(A014963(n+2)) > X, where ">" means "greater than" as in usual inequality notation.
The twin prime conjecture, according to Terence Tao on his blog, is that Sum_{n<=X} log(A014963(n))*log(A014963(n+2)) >> X where ">>" means "asymptotically greater than". There he also says that the first Hardy Littlewood conjecture states that Sum_{n<=X} log(A014963(n))*log(A014963(n+h)) = S(h)*X + o(X), where "S(h)" is the singular series.
Compare this to the prime number theorem which is lim_{X->oo} (Sum_{n<=X} log(A014963(n)))/X = 1.
(End)

Crossrefs

Programs

  • Mathematica
    nn = 90;
    A = Table[Boole[Mod[n, k] == 0], {n, nn}, {k, nn}];
    B = Table[If[Mod[k, n] == 0, MoebiusMu[n]*n, 0], {n, nn}, {k, nn}];
    T = (A.B);
    TwinMangoldt = Table[a = T[[All, kk]];
        F1 = Table[If[Mod[n, k] == 0, a[[n/k]], 0], {n, nn}, {k, nn}];
        b = T[[All, kk + 2]];
        F2 = Table[ If[Mod[n, k] == 0, b[[n/k]], 0], {n, nn}, {k, nn}];
        (F1.F2)[[All, 1]], {kk, nn - 2}];
    TT = Transpose[TwinMangoldt];
    Table[Sum[TT[[n, k]], {k, n}]/n, {n, nn - 2}]
    (* This faster alternate conjectured program agrees with Antti Karttunen's precomputed list of numbers. *)
    nn = 108; b = 4*Select[Range[1, nn, 2], SquareFreeQ]; bb = Table[DivisorSigma[0, n]*(MoebiusMu[n] + Sum[If[b[[j]] == n, LiouvilleLambda[n]*2/3, 0], {j, 1, Length[b]}]), {n, 1, nn}];
    cc = Table[Sum[If[Mod[n, k] == 0, bb[[n/k]]*DivisorSigma[0, k], 0], {k, 1, n}], {n, 1, nn}] (* Mats Granvik, Mar 17 2019 *)
    (* Dirichlet generating function *) s=7; nn=2500; N[Zeta[s]^2*Product[(1 - 2 Prime[j]^(-s)), {j, 1, nn}]*(1 + Sum[1/2/2^(n*(s - 1)), {n, 2, nn}]), 40] (* Mats Granvik, Apr 06 2019 *)
  • PARI
    up_to = 256;
    DirConv(ma,h) = { my(u = matsize(ma)[1], md = matrix(u,u)); for(n=1,u-h,for(k=1,u,md[n,k] = sumdiv(k,d,ma[n,d]*ma[n+h,k/d]))); (md); };
    A298826list(up_to) = { my(h=2, matA = matrix(up_to+h,up_to+h,n,k,!(n%k)), matB = matrix(up_to+h,up_to+h,n,k,(!(k%n))*moebius(n)*n), matT = matA*matB, matD = DirConv(matT,2)); vector(up_to,i,(1/i)*sum(j=1,i,matD[j,i])); };
    v298826 = A298826list(up_to);
    A298826(n) = v298826[n]; \\ Antti Karttunen, Sep 30 2018

Formula

a(n) = Sum_{k=1..n} (A298674(k, n))/n = A298825(n)/n.
Conjecture: a(n) = (-1)^(n+1) * Sum_{d|n} A076479(d). - Daniel Suteu, Apr 04 2019
From Mats Granvik, Apr 06 2019: (Start)
The Dirichlet generating function, after Daniel Suteu above and Álvar Ibeas in A076479, appears to be: Sum_{n>=1} a(n)/n^s = zeta(s)^2*(Product_{j>=1} (1 - 2*prime(j)^(-s)))*(1 + Sum_{n>=2} ((1/2)/2^(n*(s - 1)))).
Conjectured formula: Let b(n) = 4*A056911(n) and c(n) = A000005(n)*A008683(n) + Sum_{j=1..length(b(1..N))} [b(j)=n]*A008836(n)*2/3) then a(n) = Sum_{k=1..n}[k|n] c(n/k)*A000005(k). (End)
Conjecture: a(n) = (-1)^(n+1) * Sum_{d|n} mu(d)*tau(d)*tau(n/d). - Ridouane Oudra, Nov 19 2019
The conjectured Dirichlet generating function simplifies to: Sum_{n>=1} a(n)/n^s = zeta(s)^2*(Product_{j>=1} (1 - 2*prime(j)^(-s)))*(1 + 2^(1 - s)/(2^s - 2)). - Steven Foster Clark, Sep 12 2022
Conjecture: abs(a(n)) = A361430(n). - Vaclav Kotesovec, Mar 12 2023
Conjecture: a(n) is multiplicative with a(p^e) = (-1)^p * (e-1) for prime p and e > 0. That conforms to the conjectured Dirichlet generating function (compare Steven Foster Clark, Sep 12 2022). - Werner Schulte, Jun 09 2025

Extensions

More terms from Antti Karttunen, Sep 30 2018

A370329 a(n) is the number of coreful divisors of the n-th powerful number that are also powerful numbers.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 2, 4, 1, 1, 5, 2, 3, 1, 2, 1, 2, 6, 3, 1, 1, 2, 4, 1, 4, 7, 4, 1, 3, 2, 1, 2, 3, 6, 1, 1, 2, 8, 1, 5, 3, 6, 2, 1, 5, 3, 4, 1, 8, 1, 1, 2, 4, 4, 9, 1, 2, 6, 1, 1, 9, 2, 2, 2, 1, 2, 1, 1, 4, 5, 1, 10, 1, 2, 1, 3, 8, 6, 3, 10, 1, 6, 2, 1, 7, 2, 3
Offset: 1

Views

Author

Amiram Eldar, Feb 15 2024

Keywords

Comments

A coreful divisor d of a number n is a divisor with the same set of distinct prime factors as n (see A307958).
The positive terms of A361430.

Crossrefs

Cf. A001694, A002117, A062503, A078434, A307958, A360908 (analogous with squares), A361430, A370328.

Programs

  • Mathematica
    f[p_, e_] := e - 1; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; With[{max = 10^4}, s /@ Union@ Flatten@ Table[i^2*j^3, {j, 1, max^(1/3)}, {i, 1, Sqrt[max/j^3]}]]
  • PARI
    lista(kmax) = {my(e); for(k = 1, kmax, e = factor(k)[,2]; if(k == 1 || vecmin(e) > 1, print1(prod(i = 1, #e, e[i]-1), ", ")));}

Formula

a(n) = A361430(A001694(n)).
a(n) = 1 if and only if n is the square of a squarefree number (A062503).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(3/2) * zeta(3) * Product_{p prime} (1 + 2/p^2 + 2/p^(5/2) - 1/p^3 - 2/p^(7/2) - 2/p^4) = 6.91748056612108993003... . (The infinite product of primes is the value of f(1/2) in A361430).

A364988 a(n) is the sum of coreful divisors d of n such that n/d is also a coreful divisor.

Original entry on oeis.org

1, 0, 0, 2, 0, 0, 0, 6, 3, 0, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 12, 0, 0, 0, 0, 30, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 62, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 0, 39, 0, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Aug 15 2023

Keywords

Comments

A coreful divisor d of a number n is a divisor with the same set of distinct prime factors as n (see A307958).
The number of these divisors is A361430(n).

Crossrefs

Similar sequences: A000203, A057723 (sum of coreful divisors).

Programs

  • Mathematica
    f[p_, e_] := (p^e - 1)/(p-1) - 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^f[i,2] - 1)/(f[i,1] - 1) - 1);}

Formula

Multiplicative with a(p^e) = (p^e - 1)/(p-1) - 1.
Dirichlet g.f.: zeta(s) * zeta(s-1) * Product_{p prime} (1 + (2*p - p^s*(p+1))/p^(2*s)).
a(n) > 0 if and only if n is powerful (A001694).
a(n) <= n with equality only when n = 1.
a(p^2) = p for a prime p.

A335850 Cubefull highly composite numbers: numbers with a record number of cubefull divisors (A190867).

Original entry on oeis.org

1, 8, 16, 32, 64, 128, 256, 512, 1024, 1728, 2592, 5184, 7776, 10368, 15552, 20736, 31104, 46656, 62208, 93312, 124416, 186624, 248832, 373248, 559872, 746496, 1119744, 1492992, 2239488, 2985984, 3359232, 4478976, 6718464, 8957952, 13436928, 17915904, 26873856
Offset: 1

Views

Author

Amiram Eldar, Jun 26 2020

Keywords

Comments

The analogous sequence of squarefull highly composite numbers is the sequence of highly powerful numbers (A005934).
The corresponding record values are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 16, ... (see the link for more values).
Also, indices of records in A361430, i.e., numbers k with a record number of coreful divisors d such that k/d is also a coreful divisor of k (a coreful divisor d of a number k is a divisor with the same set of distinct prime factors as k, see A307958). - Amiram Eldar, Aug 15 2023

Crossrefs

Subsequence of A025487.

Programs

  • Mathematica
    f[p_, e_] := Max[1, e-1] ; d[1] = 1; d[n_] := Times @@ (f @@@ FactorInteger[n]); s = {}; dm = 0; Do[d1 = d[n]; If[d1 > dm, dm = d1; AppendTo[s, n]], {n, 1, 10^5}]; s
  • PARI
    d(n) = vecprod(apply(x->max(1, x-1), factor(n)[, 2]));
    lista(kmax) = {my(dm = 0, d1); for(k = 1, kmax, d1 = d(k); if(d1 > dm, dm = d1; print1(k, ", ")));} \\ Amiram Eldar, Aug 15 2023

A379593 Numbers that set records in A379592.

Original entry on oeis.org

8, 32, 128, 512, 2048, 8192, 20736, 41472, 82944, 165888, 186624, 373248, 746496, 1492992, 2985984, 5971968, 6718464, 11943936, 23887872, 26873856, 53747712, 107495424, 214990848, 241864704, 429981696, 859963392, 967458816, 1719926784, 3439853568, 3869835264, 7464960000
Offset: 1

Views

Author

Michael De Vlieger, Dec 30 2024

Keywords

Comments

Proper subset of the intersection of A025487 and A320966.
Let k be a powerful number (in A001694) and let coreful d | k be such that k/d is also coreful, i.e., rad(d) = rad(d/k) = rad(k), where rad = A007947 is the squarefree kernel. Suppose d < d/k. Then coreful d may either divide k/d or not (indeed, if d/k < d, k/d may either divide d or not).
Then we have either d | k/d (the cardinality of such divisors is A379592(n) for k = A320966(n)) or d does not divide k/d (the cardinality of such divisors is A379552(n) for k = A376936(n)). (The case d = k/d, both certainly coreful, of course pertains to perfect squares k in A000290.)
Coreful divisors are counted by A361430 across natural numbers, and A370329 across powerful numbers A001694. Numbers that set records in A361430 (and A370329) are in A005934 (highly powerful numbers), with records in A036965.

Examples

			Let b(n) = A379592(n).
Table showing exponents of prime power factors of a(n) for n = 1..12. Example: a(7) = 20736 = 2^8*3^4, so "8.4" appears in the "exp." column.
   n      a(n)  exp. b(a(n))
  --------------------------
   1        8    3       1   2*4
   2       32    5       2   2*16 = 4*8
   3      128    7       3   2*64 = 4*32 = 8*16
   4      512    9       4   2*256 = 4*128 = 8*64 = 16*32
   5     2048   11       5   2*1024 = 4*512 = 8*256 = 16*128 = 32=64
   6     8192   13       6   2*4096 = 4*2048 = 8*1024 = 16*512 = 32*256 = 64*128
   7    20736    8.4     7
   8    41472    9.4     8
   9    82944   10.4     9
  10   165888   11.4    10
  11   186624    8.6    11
  12   373248    9.6    12
		

Crossrefs

Programs

  • Mathematica
    (* Load function f at A025487 *)
    r = 0; s = Union@ Flatten@ f[10]; nn = Length[s];
    rad[x_] := Times @@ FactorInteger[x][[All, 1]];
      Transpose@ Reap[Monitor[
        Do[k = s[[i]];
          If[# > r, r = #; Sow[k]] &@
            Count[Transpose@ {#, k/#} &@ #[[2 ;; Ceiling[Length[#]/2]]] &@ Divisors[k],
              _?(And[rad[#1] == rad[#2],
                Xor[Divisible[#2, #1],
                    Divisible[#1, #2]]] & @@ # &)], {i, nn}], {i, nn}] ][[-1, 1]]

A380691 Number of divisors d | k, d < k/d, such that (d, k/d) are neither unitary nor both coreful, where k is neither squarefree nor prime power (in A126706).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 1, 1, 3, 1, 1, 2, 2, 2, 1, 1, 3, 1, 1, 3, 2, 2, 2, 1, 4, 1, 1, 2, 2, 3, 3, 1, 1, 4, 1, 2, 2, 2, 2, 2, 4, 1, 1, 2, 2, 1, 2, 4, 3, 1, 4, 1, 1, 1, 3, 5, 2, 1, 2, 5, 2, 2, 3, 2, 1, 3, 1, 4, 2, 4, 2, 2, 2, 2, 1, 6, 1, 1, 1, 2, 2, 5, 2, 1, 4, 1
Offset: 1

Views

Author

Michael De Vlieger, Feb 09 2025

Keywords

Comments

A divisor d | k is said to be coreful if rad(d) = rad(k), where rad = A007947.
In other words, half the number of divisors d | k such that both gcd(d, k/d) > 1 and rad(d) != rad(k/d).
Divisors d and k/d have at least 1 prime factor in common and at least one prime factor q divides one but not the other divisor. Thus, the reference domain S is the intersection of nonsquarefree numbers (k in A013929) and numbers that are not prime powers (k in A024619).
Let S = { prime p : p | d } and let T = { prime p : p | k/d }. Then this sequence counts divisor pairs (d, k/d), d < k/d, such that the symmetric difference of S and T is not empty. For instance, for k = 24 = 2*12 = 4*6, where, in both cases, the product P of the symmetric difference is 3. For k = 180 = 2*90 = 3*60 = 6*30 = 10*18 = 12*15, the products of symmetric differences are 15, 10, 5, 15, and 10, respectively. In the case of 10*18, it is evident that neither rad(10) = rad(180) nor rad(18) = rad(30).

Examples

			Table of n, a(n) listing divisors d and S(n)/d for select values of n:
    n  S(n) a(n)  d*S(n)/d
  ---------------------------------------------------------------------
    1    12   1   2*6
    2    18   1   3*6
    3    20   1   2*10
    4    24   2   2*12, 4*6
    5    28   1   2*14
    6    36   2   2*18, 3*12
    7    40   2   2*20, 4*10
   10    48   3   2*24, 4*12, 6*8
   26    96   4   2*48, 4*24, 6*16, 8*12
   57   180   5   2*90, 3*60, 6*30, 10*18, 12*15
   77   240   6   2*120, 4*60, 6*40, 8*30, 10*24, 12*20
  123   360   8   2*180, 3*120, 4*90, 6*60, 10*36, 12*30, 15*24, 18*20
		

Crossrefs

Programs

  • Mathematica
    Table[1/2*(DivisorSigma[0, k] - 2^PrimeNu[k] - Apply[Times, FactorInteger[k][[All, -1]] - 1]), {k, Select[Range[12, 240], Nor[PrimePowerQ[#], SquareFreeQ[#]] &] }]

Formula

Let tau = A000005, omega = A001221, rad = A007947, and S = A126706.
a(n) = card({ d | k : d < k/d, gcd(d, k/d) > 1, rad(d) != rad(k/d) }), k = S(n).
For k in S(n), a(n) = 1/2 * tau(k) - 2^omega(k) - Product_{p|k} m-1, where p^m | k but p^(m-1) does not divide k.
For k = S(n), a(n) = 1/2 * (A000005(k) - A034444(k) - A361430(k)).
Showing 1-8 of 8 results.