cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A322484 Semi-unitary highly composite numbers: where the number of semi-unitary divisors of n (A322483) increases to a record.

Original entry on oeis.org

1, 2, 6, 24, 30, 120, 210, 840, 2310, 7560, 9240, 30030, 83160, 120120, 480480, 1081080, 1921920, 2042040, 8168160, 18378360, 32672640, 38798760, 155195040, 349188840, 620780160, 892371480, 3569485920, 8031343320, 14277943680, 25878772920, 103515091680
Offset: 1

Views

Author

Amiram Eldar, Dec 11 2018

Keywords

Comments

The record numbers of semi-unitary divisors are 1, 2, 4, 6, 8, 12, 16, 24, 32, 36, 48, 64, 72, 96, 128, 144, 160, 192, 256, 288, 320, 384, 512, 576, 640, 768, 1024, 1152, 1280, 1536, 2048, ... (see the link for more values).

Crossrefs

Analogous sequences: A002182 (regular divisors), A002110 (unitary divisors), A293185 (bi-unitary).
Cf. A322483.

Programs

  • Mathematica
    f[p_, e_] := Floor[(e+3)/2]; sud[n_] := If[n==1, 1, Times @@ (f @@@ FactorInteger[n])]; seq={}; sm=0; Do[s = sud[k]; If[s > sm, AppendTo[seq, k]; sm = s], {k, 1, 100000}]; seq
  • PARI
    nbu(n) = {my(f = factor(n)); for (k=1, #f~, f[k,1] = (f[k,2]+3)\2; f[k,2] = 1;); factorback(f);} \\ A322483
    lista(nn) = {my(m = 0, nb); for (n=1, nn, nb = nbu(n); if (nb > m, m = nb; print1(n, ", ")););} \\ Michel Marcus, Dec 14 2018

A380601 Decimal expansion of the asymptotic mean of the ratio A322483(k)/A000005(k).

Original entry on oeis.org

8, 5, 9, 8, 0, 6, 7, 7, 9, 3, 3, 0, 3, 4, 3, 6, 3, 3, 1, 1, 2, 4, 4, 7, 6, 7, 5, 9, 4, 9, 4, 1, 8, 3, 2, 4, 6, 6, 5, 1, 5, 8, 0, 9, 5, 5, 1, 3, 8, 5, 6, 6, 1, 1, 2, 7, 7, 1, 5, 4, 6, 4, 8, 9, 4, 9, 1, 3, 4, 3, 3, 0, 8, 5, 8, 7, 6, 9, 4, 9, 7, 3, 4, 2, 3, 7, 6, 4, 8, 4, 8, 5, 9, 3, 5, 3, 5, 2, 4, 5, 4, 4, 8, 4, 5
Offset: 0

Views

Author

Amiram Eldar, Jan 27 2025

Keywords

Examples

			0.85980677933034363311244767594941832466515809551385...
		

Crossrefs

Cf. A000005, A322483, A380602 (mean of the inverse ratio).
Similar constants: A308043, A361060, A361062.

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 1000; f[x_] := (2*x + 3*(x-1)*Log[1 - x] + (x-1)*Log[1+x])/(4*x); c = Rest[CoefficientList[Series[Log[f[x]], {x, 0, m}], x]]; RealDigits[Exp[NSum[Indexed[c, k]*PrimeZetaP[k], {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 120][[1]]
  • PARI
    default(realprecision, 120); default(parisize, 30000000);
    my(m = 1024, x = 'x + O('x^m), v); v = Vec((2*x + 3*(x-1)*log(1-x) + (x-1)*log(1+x))/(4*x)); prodeulerrat(sum(i=1, #v, v[i]/p^(i-1)))

Formula

Equals lim_{m->oo} (1/m) * Sum_{k=1..m} A322483(k)/A000005(k).
Equals Product_{p prime} (1/2 - ((p-1)/4) * (3*log(1-1/p) + log(1+1/p))).

A380602 Decimal expansion of the asymptotic mean of the ratio A000005(k)/A322483(k).

Original entry on oeis.org

1, 2, 3, 5, 8, 7, 9, 7, 7, 7, 5, 2, 6, 1, 7, 3, 5, 4, 8, 7, 1, 0, 9, 3, 8, 0, 5, 3, 1, 8, 9, 4, 5, 1, 1, 0, 4, 4, 7, 7, 5, 2, 7, 5, 0, 3, 7, 0, 3, 0, 5, 4, 8, 6, 3, 8, 6, 2, 9, 3, 6, 8, 6, 8, 4, 7, 1, 1, 0, 0, 2, 2, 9, 1, 4, 5, 9, 3, 3, 4, 8, 6, 7, 0, 3, 7, 8, 3, 8, 5, 6, 5, 2, 3, 6, 6, 0, 9, 4, 4, 9, 6, 9, 1, 7
Offset: 1

Views

Author

Amiram Eldar, Jan 27 2025

Keywords

Examples

			1.23587977752617354871093805318945110447752750370305...
		

Crossrefs

Cf. A000005, A322483, A380601 (mean of the inverse ratio).
Similar constants: A307869, A361059, A361061.

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 1000; f[x_] := 2/x - (1 + 1/x - 2/x^2)*Log[1-x^2]/x; c = Rest[CoefficientList[Series[Log[f[x]], {x, 0, m}], x]]; RealDigits[Exp[NSum[Indexed[c, k]*PrimeZetaP[k], {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 120][[1]]
  • PARI
    default(realprecision, 120); default(parisize, 30000000);
    my(m = 1024, x = 'x + O('x^m), v); v = Vec(2/x - (1 + 1/x - 2/x^2)*log(1-x^2)/x); prodeulerrat(sum(i=1, #v, v[i]/p^(i-1)))

Formula

Equals lim_{m->oo} (1/m) * Sum_{k=1..m} A000005(k)/A322483(k).
Equals Product_{p prime} (2*p - (1+p-2*p^2)*log(1-1/p^2)*p).

A325837 The number of coreful divisors of n that are exponentially odd numbers (A268335).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 07 2019

Keywords

Comments

First differs from A050361 at n = 64.
From Amiram Eldar, Sep 08 2023: (Start)
The number of exponentially odd divisors of n is A322483(n), and their sum is A033634(n).
A coreful divisor d of a number n is a divisor with the same set of distinct prime factors as n. (End)
Also, the number of divisors of n that are cubefull exponentially odd numbers (A335988). - Amiram Eldar, Feb 11 2024

Crossrefs

Cf. A003557, A005361 (number of coreful divisors), A046951, A268335.

Programs

  • Mathematica
    fun[p_,e_] := Floor[(e+1)/2]; a[n_] := Times@@(fun@@@FactorInteger[n]); Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> (x+1)\2, factor(n)[, 2])); \\ Amiram Eldar, Sep 01 2023

Formula

Multiplicative with a(p^e) = floor((e+1)/2).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + 1/(p*(p^2-1))) = 1.231291... (A065487). - Amiram Eldar, Sep 10 2022
a(n) = A046951(A350390(n)) (the number of squares dividing the largest exponentially odd divisor of n). - Amiram Eldar, Sep 01 2023
From Amiram Eldar, Sep 08 2023: (Start)
a(n) = A046951(A003557(n)).
Dirichlet g.f.: zeta(s) * zeta(2*s) * Product_{p prime} (1 - 1/p^(2*s) + 1/p^(3*s)). (End)

Extensions

Name corrected by Amiram Eldar, Sep 08 2023

A368979 The number of exponential divisors of n that are exponentially odd numbers (A268335).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2024

Keywords

Comments

First differs from A367516 at n = 128, and from A359411 at n = 512.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := DivisorSigma[0, e/2^IntegerExponent[e, 2]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> numdiv(x >> valuation(x, 2)), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = A001227(e).
a(n) >= 1, with equality if and only if n is in A138302.
a(n) <= A049419(n), with equality if and only if n is noncomposite (A008578).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + Sum_{k>=2} (d(k) - d(k-1))/p^k) = 1.13657098749361390865..., where d(k) is the number of odd divisors of k (A001227).

A322485 The sum of the semi-unitary divisors of n.

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 11, 10, 18, 12, 20, 14, 24, 24, 19, 18, 30, 20, 30, 32, 36, 24, 44, 26, 42, 31, 40, 30, 72, 32, 39, 48, 54, 48, 50, 38, 60, 56, 66, 42, 96, 44, 60, 60, 72, 48, 76, 50, 78, 72, 70, 54, 93, 72, 88, 80, 90, 60, 120, 62, 96, 80, 71, 84, 144
Offset: 1

Views

Author

Amiram Eldar, Dec 11 2018

Keywords

Comments

A semi-unitary divisor of n is defined as the largest divisor d of n such that the largest divisor of d that is a unitary divisor of n/d is 1 (see A322483).

Examples

			The semi-unitary divisors of 8 are 1, 2, 8 (4 is not semi-unitary divisor since the largest divisor of 4 that is a unitary divisor of 8/4 = 2 is 2 > 1), and their sum is 11, thus a(8) = 11.
		

References

  • J. Chidambaraswamy, Sum functions of unitary and semi-unitary divisors, J. Indian Math. Soc., Vol. 31 (1967), pp. 117-126.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^Floor[(e+1)/2] - 1)/(p-1) + p^e; susigma[n_] := If[n==1, 1, Times @@ (f @@@ FactorInteger[n])]; Array[susigma, 100]
  • PARI
    a(n) = {my(f = factor(n)); for (k=1, #f~, my(p=f[k,1], e=f[k,2]); f[k,1] = (p^((e+1)\2) - 1)/(p-1) + p^e; f[k,2] = 1;); factorback(f);} \\ Michel Marcus, Dec 14 2018

Formula

Multiplicative with a(p^e) = sigma(p^floor((e-1)/2)) + p^e = (p^floor((e+1)/2) - 1)/(p-1) + p^e.
In particular a(p) = p + 1, a(p^2) = p^2 + 1, a(p^3) = p^3 + p + 1.
a(n) <= A000203(n) with equality if and only if n is squarefree (A005117).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(2)*zeta(3)/2) * Product_{p prime} (1 - 2/p^3 + 1/p^5) = 0.7004703314... . - Amiram Eldar, Nov 24 2022

A365549 The number of exponentially odd divisors of the square root of the largest square dividing n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 08 2023

Keywords

Comments

First differs from A278908, A307848, A323308 and A358260 at n = 64.
The number of exponentially odd divisors of the largest square dividing n is the same as the number of squares dividing n, A046951(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 2 + Floor[(e-2)/4]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> 2 + (x-2)\4, factor(n)[, 2]));

Formula

a(n) = A322483(A000188(n)).
a(n) >= 1 with equality if and only if n is squarefree (A005117).
Multiplicative with a(p^e) = 2 + floor((e-2)/4).
Dirichlet g.f.: zeta(s) * zeta(4*s) * Product_{p prime} (1 + 1/p^(2*s) - 1/p^(4*s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(4) * Product_{p prime} (1 + 1/p^2 - 1/p^4) = 1.54211628314015874165... .

A372380 The number of divisors of n that are numbers whose number of divisors is a power of 2.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 3, 2, 4, 2, 4, 2, 4, 4, 3, 2, 4, 2, 4, 4, 4, 2, 6, 2, 4, 3, 4, 2, 8, 2, 3, 4, 4, 4, 4, 2, 4, 4, 6, 2, 8, 2, 4, 4, 4, 2, 6, 2, 4, 4, 4, 2, 6, 4, 6, 4, 4, 2, 8, 2, 4, 4, 3, 4, 8, 2, 4, 4, 8, 2, 6, 2, 4, 4, 4, 4, 8, 2, 6, 3, 4, 2, 8, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Apr 29 2024

Keywords

Comments

First differs from A061389 and A322483 at n = 32.
First differs from A380922 at n = 128. - Vaclav Kotesovec, Apr 22 2025

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Floor[Log2[e + 1]] + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> exponent(x+1)+1, factor(n)[, 2]));
    
  • Python
    from math import prod
    from sympy import factorint
    def A372380(n): return prod((e+1).bit_length() for e in factorint(n).values()) # Chai Wah Wu, Apr 30 2024

Formula

Multiplicative with a(p^e) = floor(log_2(e+1)) + 1.
a(n) = A000005(n) if and only if n is squarefree (A005117).

A365491 The number of divisors of the smallest number whose 4th power is divisible by n.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 2, 4, 2, 8, 2, 3, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 8, 2, 4, 4, 3, 4, 8, 2, 4, 4, 8, 2, 4, 2, 4, 4, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Sep 05 2023

Keywords

Comments

First differs from A365210 at n = 25 and from A034444 at n = 32.
The number of divisors of the smallest 4th divisible by n, A053167(n), is A365492(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Ceiling[e/4] + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
    With[{c=Range[100]^4},Table[DivisorSigma[0,Surd[SelectFirst[c,Mod[#,n]==0&],4]],{n,90}]] (* Harvey P. Dale, Jul 09 2024 *)
  • PARI
    a(n) = vecprod(apply(x -> (x-1)\4 + 2, factor(n)[, 2]));

Formula

a(n) = A000005(A053166(n)).
Multiplicative with a(p^e) = ceiling(e/4) + 1.
a(n) <= A000005(n) with equality if and only if n is squarefree (A005117).
Dirichlet g.f.: zeta(s) * zeta(4*s) * Product_{p prime} (1 + 1/p^s - 1/p^(4*s)).
From Vaclav Kotesovec, Sep 06 2023: (Start)
Dirichlet g.f.: zeta(s)^2 * zeta(4*s) * Product_{p prime} (1 - 1/p^(2*s) - 1/p^(4*s) + 1/p^(5*s)).
Let f(s) = Product_{p prime} (1 - 1/p^(2*s) - 1/p^(4*s) + 1/p^(5*s)).
Sum_{k=1..n} a(k) ~ zeta(4) * f(1) * n * (log(n) + 2*gamma - 1 + 4*zeta'(4)/zeta(4) + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - 1/p^2 - 1/p^4 + 1/p^5) = 0.57615273538566705952061107826411727540624711680289618854325028459572487...,
f'(1) = f(1) * Sum_{p prime} (-5 + 4*p + 2*p^3) * log(p) / (1 - p - p^3 + p^5) = f(1) * 1.3011434396559802378314782600747661399223385669839998680418996210...
and gamma is the Euler-Mascheroni constant A001620. (End)
a(n) = A322483(A019554(n)) (the number of exponentially odd divisors of the smallest number whose square is divisible by n). - Amiram Eldar, Sep 08 2023

A365552 The number of exponentially odd divisors of the powerful part of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 08 2023

Keywords

Comments

First differs from A095691 at n = 512.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, 1, Floor[(e + 3)/2]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x == 1, 1, (x+3)\2), factor(n)[, 2]));

Formula

a(n) = A322483(A057521(n)).
Multiplicative with a(p) = 1 and a(p^e) = floor((e+3)/2) for e >= 2.
Dirichlet g.f.: zeta(s) * zeta(2*s) * Product_{p prime} (1 + 1/p^(3*s) - 1/p^(4*s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(2) * Product_{p prime} (1 + 1/p^3 - 1/p^4) = 1.80989829762278336163... .
Showing 1-10 of 23 results. Next