cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A335386 Tri-unitary highly composite numbers: where the number of tri-unitary divisors (A335385) increases to a record.

Original entry on oeis.org

1, 2, 6, 24, 120, 840, 7560, 83160, 1081080, 18378360, 349188840, 8031343320, 200783583000, 5822723907000, 180504441117000, 6678664321329000, 273825237174489000, 11774485198503027000, 553400804329642269000, 27116639412152471181000, 1437181888844080972593000
Offset: 1

Views

Author

Amiram Eldar, Jun 04 2020

Keywords

Crossrefs

Analogous sequences: A002182 (highly composite), A002110 (unitary), A037992 (infinitary), A293185 (bi-unitary), A318278 (exponential), A306736 (exponential infinitary), A307845 (exponential unitary), A309141 (nonunitary), A322484 (semi-unitary).
Cf. A335385.

Programs

  • Mathematica
    f[p_, e_] := If[e == 3 || e == 6, 4, 2]; d[1] = 1; d[n_] := Times @@ (f @@@ FactorInteger[n]); dm = 0; s = {}; Do[If[(d1 = d[n]) > dm, dm = d1; AppendTo[s, n]], {n, 1, 1100000}]; s

Formula

A335385(a(n)) = 2^(n-1).

A348342 Noninfinitary highly composite numbers: where the number of noninfinitary divisors (A348341) increases to a record.

Original entry on oeis.org

1, 4, 12, 16, 36, 48, 144, 240, 576, 720, 1680, 2880, 3600, 5040, 11520, 14400, 15120, 20160, 25200, 45360, 55440, 80640, 100800, 166320, 176400, 226800, 277200, 498960, 720720, 887040, 1108800, 1587600, 1940400, 2494800, 3603600, 6486480, 9979200, 11531520, 14414400
Offset: 1

Views

Author

Amiram Eldar, Oct 13 2021

Keywords

Comments

The record numbers of noninfinitary divisors are 0, 1, 2, 3, 5, 6, 11, 12, 13, 22, 24, 26, 37, 44, 46, ... (see the link for more values).

Crossrefs

Cf. A348341.
Subsequence of A025487.
Similar sequences: A002182, A002110 (unitary), A037992 (infinitary), A293185, A306736, A307845, A309141, A318278, A322484, A335386.

Programs

  • Mathematica
    nid[1] = 0; nid[n_] := DivisorSigma[0, n] - Times @@ Flatten[2^DigitCount[#, 2, 1] & /@ FactorInteger[n][[;; , 2]]]; dm = -1; s = {}; Do[If[(d = nid[n]) > dm, dm = d; AppendTo[s, n]], {n, 1, 10^6}]; s

A348632 Nonexponential highly composite numbers: where the number of nonexponential divisors (A160097) increases to a record.

Original entry on oeis.org

1, 6, 12, 24, 30, 60, 120, 210, 240, 360, 420, 720, 840, 1260, 1680, 2520, 3360, 5040, 7560, 9240, 10080, 15120, 18480, 25200, 27720, 36960, 50400, 55440, 83160, 110880, 166320, 221760, 277200, 332640, 480480, 498960, 554400, 665280, 720720, 1081080, 1441440
Offset: 1

Views

Author

Amiram Eldar, Oct 26 2021

Keywords

Comments

The corresponding record values are 1, 3, 4, 6, 7, 10, 14, 15, 17, 20, 22, 24, ... (see the link for more values).

Crossrefs

Cf. A160097.
Subsequence of A025487.
Similar sequences: A002182, A002110 (unitary), A037992 (infinitary), A293185, A306736, A307845, A309141, A318278, A322484, A335386.

Programs

  • Mathematica
    f1[p_, e_] := e + 1; f2[p_, e_] := DivisorSigma[0, e]; ned[1] = 1; ned[n_] := Times @@ f1 @@@ (f = FactorInteger[n]) - Times @@ f2 @@@ f; dm = -1; s = {}; Do[If[(d = ned[n]) > dm, dm = d; AppendTo[s, n]], {n, 1, 10^6}]; s

A353899 Indices of records in A353898.

Original entry on oeis.org

1, 2, 4, 6, 12, 30, 36, 60, 180, 420, 900, 1260, 4620, 6300, 13860, 44100, 55440, 69300, 180180, 485100, 720720, 900900, 3063060, 6306300, 12252240, 15315300, 58198140, 107207100, 232792560, 290990700, 1163962800, 2036934900, 5354228880, 6692786100, 22406283900
Offset: 1

Views

Author

Amiram Eldar, May 10 2022

Keywords

Comments

First differs from A333931 at n=23.
The corresponding record values are 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 27, 36, 48, 54, 72, 81, 96, 108, 144, 162, ... (see the link for more values).

Crossrefs

Subsequence of A025487 and A138302.
Similar sequences: A002182, A002110 (unitary), A037992 (infinitary), A293185, A306736, A307845, A309141, A318278, A322484, A335386.

Programs

  • Mathematica
    f[p_, e_] := Floor[Log2[e]] + 2; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; seq = {}; sm = 0; Do[s1 = s[n]; If[s1 > sm, sm = s1; AppendTo[seq, n]], {n, 1, 10^6}]; seq

A358263 Numbers with a record number of noninfinitary square divisors.

Original entry on oeis.org

1, 16, 144, 256, 1296, 2304, 20736, 57600, 331776, 518400, 2822400, 8294400, 12960000, 25401600, 132710400, 207360000, 228614400, 406425600, 635040000, 2057529600, 3073593600, 6502809600, 10160640000, 27662342400, 31116960000, 51438240000, 76839840000, 248961081600
Offset: 1

Views

Author

Amiram Eldar, Nov 06 2022

Keywords

Comments

Numbers m such that A358261(m) > A358261(k) for all k < m.
The corresponding record values are 0, 1, 2, 3, 5, 6, 11, 12, 13, 22, 24, 26, 37, 44, 46, 47, 48, ... (see the link for more values).

Crossrefs

Subsequence of A025487.
Similar sequences: A002182, A002110 (unitary), A037992 (infinitary), A293185, A306736, A307845, A309141, A318278, A322484, A335386, A348632, A358253.

Programs

  • Mathematica
    f1[p_, e_] := 1 + Floor[e/2]; f2[p_, e_] := 2^DigitCount[If[OddQ[e], e - 1, e], 2, 1]; f[1] = 0; f[n_] := Times @@ f1 @@@ (fct = FactorInteger[n]) - Times @@ f2 @@@ fct; s = {}; fmax = -1; Do[If[(fn = f[n]) > fmax, fmax = fn; AppendTo[s, n]], {n, 1, 6*10^5}]; s
  • PARI
    s(n) = {my(f = factor(n));  prod(i=1, #f~, 1+f[i,2]\2) - prod(i=1, #f~, 2^hammingweight(if(f[i,2]%2, f[i,2]-1, f[i,2])))};
    lista(nmax) = {my(smax = -1, sn); for(n = 1, nmax, sn = s(n); if(sn > smax, smax = sn; print1(n, ", "))); }

A325839 Exponentially-odd coreful highly composite numbers: numbers with record values of the number of exponentially odd coreful divisors (A325837).

Original entry on oeis.org

1, 8, 32, 128, 512, 864, 3456, 7776, 13824, 31104, 124416, 279936, 497664, 1119744, 1990656, 3888000, 10077696, 15552000, 34992000, 62208000, 139968000, 248832000, 388800000, 559872000, 1259712000, 1555200000, 2239488000, 3499200000, 6220800000, 8957952000
Offset: 1

Views

Author

Amiram Eldar, Sep 07 2019

Keywords

Comments

The corresponding record numbers of exponentially-odd divisors are 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 21, 24, 25, 30, 32, 36, 40, 42, 45, 48, 50, 54, 56, 60, 63, 64, ... (see the link for more terms).
The even version of this sequence is A046952 which is the sequence of numbers with record number of square divisors (only even exponents, A046951).
Numbers with record values of the number of exponentially odd divisors are the same as the numbers with record values of the number of semi-unitary divisors (A322484). - Amiram Eldar, Sep 08 2023

Crossrefs

Programs

  • Mathematica
    fun[p_,e_] := Floor[(e+1)/2]; a[n_] := Times@@(fun@@@FactorInteger[n]); am = 0; s={}; Do[a1=a[n]; If[a1>am, am=a1; AppendTo[s, n]], {n, 1, 300000}]; s

Extensions

Name corrected by Amiram Eldar, Sep 08 2023

A377710 Numbers that have a record number of infinitary divisors that are exponentially odd numbers (A268335).

Original entry on oeis.org

1, 2, 6, 24, 30, 120, 210, 840, 2310, 7560, 9240, 30030, 83160, 120120, 510510, 1081080, 1921920, 2042040, 9699690, 18378360, 32672640, 38798760, 223092870, 349188840, 620780160, 892371480, 5587021440, 6469693230, 8031343320, 14277943680, 25878772920, 128501493120
Offset: 1

Views

Author

Amiram Eldar, Nov 04 2024

Keywords

Comments

First differs from A322484 at n = 15.
Indices of records in A363825.
The corresponding record values are 1, 2, 4, 6, 8, 12, 16, 24, 32, 36, 48, 64, 72, 96, ... (see the link for more values).

Crossrefs

Subsequence of A025487.

Programs

  • Mathematica
    f[p_, e_] := 1 + If[OddQ[e], 2^DigitCount[e-1, 2, 1], 0]; d[1] = 1; d[n_] := Times @@ f @@@ FactorInteger[n]; v = Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]]; seq = {}; dm = 0; Do[If[(dk = d[v[[k]]]) > dm, dm = dk; AppendTo[seq, v[[k]]]], {k, 1, Length[v]}]; seq
Showing 1-7 of 7 results.