cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A064610 Places k where A064608(k) (partial sums of unitary tau) is divisible by k.

Original entry on oeis.org

1, 35, 37, 1015, 27417, 27421, 27449, 27453, 19774739, 530743781, 530743799, 530743807, 530743813
Offset: 1

Views

Author

Labos Elemer, Sep 24 2001

Keywords

Comments

The corresponding quotients are 1, 3, 3, 5, 7, 7, 7, 7, 11, 13, 13, 13, 13, ...
a(14) > 7.5*10^10, if it exists. - Amiram Eldar, Jun 04 2021

Examples

			For n = 37, the sum A064608(37) = 1+2+2+2+2+4+2+...+4+4+4+2 = 111 = 3*37, so 37 is in the sequence.
		

Crossrefs

Cf. A064608.
Analogous "integer-mean" sequences for various arithmetical functions are A050226, A056650, A064605, A064606, A064607, A048290, A063986, A063971, A064911, A062982, A045345.

Programs

  • Mathematica
    s[1] = 1; s[n_] := s[n] = s[n - 1] + 2^PrimeNu[n]; Select[Range[30000], Divisible[s[#], #] &] (* Amiram Eldar, Jun 04 2021 *)

Formula

{n: A064608(n) == 0 (mod n)}.

Extensions

a(10)-a(13) from Donovan Johnson, Jul 20 2012

A061503 a(n) = Sum_{k=1..n} tau(k^2), where tau is the number of divisors function A000005.

Original entry on oeis.org

1, 4, 7, 12, 15, 24, 27, 34, 39, 48, 51, 66, 69, 78, 87, 96, 99, 114, 117, 132, 141, 150, 153, 174, 179, 188, 195, 210, 213, 240, 243, 254, 263, 272, 281, 306, 309, 318, 327, 348, 351, 378, 381, 396, 411, 420, 423, 450, 455, 470, 479, 494, 497
Offset: 1

Views

Author

N. J. A. Sloane, Jun 14 2001

Keywords

Comments

a(n) is the number of pairs of positive integers <= n with their LCM <= n. - Andrew Howroyd, Sep 01 2019

References

  • Mentioned by Steven Finch in a posting to the Number Theory List (NMBRTHRY(AT)LISTSERV.NODAK.EDU), Jun 13 2001.

Crossrefs

Cf. A000005, A061502. Partial sums of A048691.

Programs

  • GAP
    List([1..60],n->Sum([1..n],k->Tau(k^2))); # Muniru A Asiru, Mar 09 2019
    
  • Maple
    with(numtheory): a:=n->add(tau(k^2),k=1..n): seq(a(n),n=1..60); # Muniru A Asiru, Mar 09 2019
  • Mathematica
    DivisorSigma[0, Range[60]^2] // Accumulate (* Jean-François Alcover, Nov 25 2013 *)
  • PARI
    for (n=1, 1024, write("b061503.txt", n, " ", sum(k=1, n, numdiv(k^2)))) \\ Harry J. Smith, Jul 23 2009
    
  • PARI
    t=0;v=vector(60,n,t+=numdiv(n^2)) \\ Charles R Greathouse IV, Nov 08 2012
    
  • Python
    from math import prod
    from sympy import factorint
    def A061503(n): return sum(prod(2*e+1 for e in factorint(k).values()) for k in range(1,n+1)) # Chai Wah Wu, May 10 2022
  • Sage
    def A061503(n) :
        tau = sloane.A000005
        return add(tau(k^2) for k in (1..n))
    [ A061503(i) for i in (1..19)] # Peter Luschny, Sep 15 2012
    

Formula

a(n) = Sum_{j=1..n^2} floor(n/A019554(j)). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jul 20 2002
a(n) = Sum_{i=1..n} 2^omega(i) * floor(n/i). - Enrique Pérez Herrero, Sep 15 2012
a(n) ~ 3/Pi^2 * n log^2 n. - Charles R Greathouse IV, Nov 08 2012
a(n) ~ 3*n/Pi^2 * (log(n)^2 + log(n)*(-2 + 6*g - 24*z/Pi^2) + 2 - 6*g + 6*g^2 - 6*sg1 + 288*z^2/Pi^4 - 24*(-z + 3*g*z + z2)/ Pi^2), where g is the Euler-Mascheroni constant A001620, sg1 is the first Stieltjes constant (see A082633), z = Zeta'(2) (see A073002), z2 = Zeta''(2) = A201994. - Vaclav Kotesovec, Jan 30 2019
a(n) = Sum_{k=1..n} A064608(floor(n/k)). - Daniel Suteu, Mar 09 2019

Extensions

Name corrected by Peter Luschny, Sep 15 2012

A306069 Partial sums of A286324: Sum_{k=1..n} bd(k) where bd(k) is the number of bi-unitary divisors of k.

Original entry on oeis.org

1, 3, 5, 7, 9, 13, 15, 19, 21, 25, 27, 31, 33, 37, 41, 45, 47, 51, 53, 57, 61, 65, 67, 75, 77, 81, 85, 89, 91, 99, 101, 107, 111, 115, 119, 123, 125, 129, 133, 141, 143, 151, 153, 157, 161, 165, 167, 175, 177, 181, 185, 189, 191, 199, 203, 211, 215, 219, 221
Offset: 1

Views

Author

Amiram Eldar, Jun 19 2018

Keywords

Comments

The bi-unitary version of A006218 and A064608.

References

  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, page 72.

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := If[Mod[e, 2] == 1, (e + 1), e]; bdivnum[n_] := If[n==1,1,Times @@ (fun @@@ FactorInteger[n])]; Accumulate@ Array[bdivnum, {60}]
  • PARI
    udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); }
    gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m)));
    biudivs(n) = select(x->(gcud(x, n/x)==1), divisors(n));
    a(n) = sum(k=1, n, #biudivs(k)); \\ Michel Marcus, Jun 20 2018

Formula

a(n) = A*n*(log(n) + 2*gamma - 1 + B) + O(n^(1/2)*exp(-A * log(n)^(3/5) * log(log(n))^(-1/5))), where gamma = A001620, A = A306071 and B = A306072.

A069212 a(n) = Sum_{k=1..n} 3^omega(k).

Original entry on oeis.org

1, 4, 7, 10, 13, 22, 25, 28, 31, 40, 43, 52, 55, 64, 73, 76, 79, 88, 91, 100, 109, 118, 121, 130, 133, 142, 145, 154, 157, 184, 187, 190, 199, 208, 217, 226, 229, 238, 247, 256, 259, 286, 289, 298, 307, 316, 319, 328, 331, 340, 349, 358, 361, 370, 379, 388, 397
Offset: 1

Views

Author

Benoit Cloitre, Apr 14 2002

Keywords

Comments

More generally, if b is an integer =>3, Sum_{k=1..n} b^omega(k) ~ C(b)*n*log(n)^(b-1) where C(b)=1/(b-1)!*prod((1-1/p)^(b-1)*(1+(b-1)/p)).

References

  • G. Tenenbaum and Jie Wu, Cours Spécialisés No. 2: "Théorie analytique et probabiliste des nombres", Collection SMF, Ordres moyens, p. 20.
  • G. Tenenbaum, Introduction to analytic and probabilistic number theory, 3rd ed., American Mathematical Soc. (2015). See page 59.

Crossrefs

Partial sums of A074816.

Programs

  • Mathematica
    Accumulate @ Table[3^PrimeNu[n], {n, 1, 57}] (* Amiram Eldar, May 24 2020 *)
  • Python
    from sympy.ntheory.factor_ import primenu
    def A069212(n): return sum(3**primenu(m) for m in range(1,n+1)) # Chai Wah Wu, Sep 07 2023

Formula

Asymptotic formula: a(n) ~ C*n*log(n)^2 with C = (1/2) * Product_{p} ((1-1/p)^2*(1+2/p)) where the product is over all the primes.
The constant C is A065473/2. - Amiram Eldar, May 24 2020
From Ridouane Oudra, Jan 01 2021: (Start)
a(n) = Sum_{i=1..n} Sum_{j=1..n} mu(i*j)^2*floor(n/(i*j));
a(n) = Sum_{i=1..n} mu(i)^2*tau(i)*floor(n/i);
a(n) = Sum_{i=1..n} 2^Omega(i)*mu(i)^2*floor(n/i), where Omega = A001222. (End)
From Vaclav Kotesovec, Feb 16 2022: (Start)
More precise asymptotics:
Let f(s) = Product_{primes p} (1 - 3/p^(2*s) + 2/p^(3*s)), then
a(n) ~ n * (f(1)*log(n)^2/2 + log(n)*((3*gamma - 1)*f(1) + f'(1)) + f(1)*(1 - 3*gamma + 3*gamma^2 - 3*sg1) + (3*gamma - 1)*f'(1) + f''(1)/2),
where f(1) = A065473 = Product_{primes p} (1 - 3/p^2 + 2/p^3) = 0.2867474284344787341078927127898384464343318440970569956414778593366522...,
f'(1) = f(1) * Sum_{primes p} 6*log(p) / (p^2 + p - 2) = 0.8023233847630974628467999132875783526536954420333140745016349208975965...,
f''(1) = f'(1)^2/f(1) + f(1) * Sum_{primes p} -6*p*(2*p+1) * log(p)^2 / (p^2 + p - 2)^2 = -0.255987592484328884627082229528266165335336670389046663124468278519...
and gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). (End)

A328331 a(n) is the least k such that the average number of unitary divisors of {1..k} is >= n.

Original entry on oeis.org

1, 6, 35, 190, 1015, 5304, 27417, 142142, 736782, 3816852, 19774690, 102446730, 530743749, 2749606626, 14244797910
Offset: 1

Views

Author

Amiram Eldar, Oct 22 2019

Keywords

Comments

The unitary version of A085829.

Examples

			a(2) = 6 because the average number of unitary divisors of {1..6} is  A064608(6)/6 = 13/6 > 2.
		

Crossrefs

Programs

  • Mathematica
    seq={}; s = 0; k = 1; Do[While[s += 2^PrimeNu[k]; s < k*n, k++]; AppendTo[seq, k]; k++, {n, 1, 10}]; seq

Formula

Lim_{n->oo} a(n+1)/a(n) = exp(zeta(2)) = exp(Pi^2/6) = 5.180668... (since A064608(n) ~ n*log(n)/zeta(2)).

A327573 Partial sums of the number of infinitary divisors function: a(n) = Sum_{k=1..n} id(k), where id is A037445.

Original entry on oeis.org

1, 3, 5, 7, 9, 13, 15, 19, 21, 25, 27, 31, 33, 37, 41, 43, 45, 49, 51, 55, 59, 63, 65, 73, 75, 79, 83, 87, 89, 97, 99, 103, 107, 111, 115, 119, 121, 125, 129, 137, 139, 147, 149, 153, 157, 161, 163, 167, 169, 173, 177, 181, 183, 191, 195, 203, 207, 211, 213, 221
Offset: 1

Views

Author

Amiram Eldar, Sep 17 2019

Keywords

Comments

Differs from A306069 at n >= 16.

References

  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, section 1.7.5, pp. 53-54.

Crossrefs

Cf. A006218 (all divisors), A064608 (unitary), A306069 (bi-unitary), A145353 (exponential).

Programs

  • Mathematica
    f[p_, e_] := 2^DigitCount[e, 2, 1]; id[1] = 1; id[n_] := Times @@ (f @@@ FactorInteger[n]); Accumulate[Array[id, 100]]

Formula

a(n) ~ 2 * c * n * log(n), where c = 0.366625... (A327576). [Corrected by Amiram Eldar, May 07 2021]

A368673 Number of squarefree numbers less than n that do not divide n.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 4, 4, 4, 3, 6, 4, 7, 6, 7, 9, 10, 8, 11, 9, 10, 11, 14, 12, 14, 13, 15, 13, 16, 11, 18, 18, 17, 18, 19, 19, 22, 21, 22, 22, 25, 20, 27, 25, 25, 26, 29, 27, 29, 27, 28, 28, 31, 29, 30, 30, 31, 32, 35, 29, 36, 35, 35, 37, 36, 33, 40, 38, 39, 36, 43
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 02 2024

Keywords

Examples

			a(12) = 4 since there are 4 squarefree numbers less than 12 that do not divide 12, namely: 5, 7, 10, and 11.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[MoebiusMu[k]^2 (Ceiling[n/k] - Floor[n/k]), {k, n}], {n, 100}]
  • PARI
    a(n) = sum(k=1, n-1, (n % k) && issquarefree(k)); \\ Michel Marcus, Jan 03 2024
    
  • Python
    from math import isqrt
    from sympy import factorint, mobius
    def A368673(n): return sum(mobius(k)*((n-1)//k**2) for k in range(1,isqrt(n-1)+1))-(1<Chai Wah Wu, Jan 03 2024

Formula

a(n) = Sum_{k=1..n} mu(k)^2 * (ceiling(n/k) - floor(n/k)).
a(n) = A368642(n) - A064608(n).

A074787 Sum of squares of the number of unitary divisors of k from 1 to n.

Original entry on oeis.org

1, 5, 9, 13, 17, 33, 37, 41, 45, 61, 65, 81, 85, 101, 117, 121, 125, 141, 145, 161, 177, 193, 197, 213, 217, 233, 237, 253, 257, 321, 325, 329, 345, 361, 377, 393, 397, 413, 429, 445, 449, 513, 517, 533, 549, 565, 569, 585, 589, 605, 621, 637, 641, 657, 673
Offset: 1

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Sep 07 2002

Keywords

Crossrefs

Equals 4*A069811(n) + 1, for n <= 29.

Programs

Formula

a(n) = Sum_{k=1..n} ud(k)^2 = Sum_{k=1..n} A034444(k)^2 . a(n) = Sum_{k=1..n} 2^(2*omega(k)) = Sum_{k=1..n} 2^(2*A001221(k)).
a(n) ~ c * n * log(n)^3, where c = (1/6) * Product_{p prime} ((1-1/p)^3*(1+3/p)) = A319592 / 6. - Amiram Eldar, Jul 02 2022

A180361 Sum of number of unitary divisors (A034444) from 1 to 10^n.

Original entry on oeis.org

1, 23, 359, 4987, 63869, 778581, 9185685, 105854997, 1198530315, 13385107495, 147849112851, 1618471517571, 17584519050293, 189843229312125, 2038412681323151, 21783930695524161, 231837345778656901
Offset: 0

Views

Author

Andrew Lelechenko, Jan 19 2011

Keywords

Crossrefs

Formula

a(n)=A064608(10^n)

Extensions

a(3) corrected from 4983 to 4987 by Henri Lifchitz, Nov 07 2017
a(17)-a(23) from Henri Lifchitz, Nov 07 2017

A309192 a(n) = Sum_{k=1..n} mu(k)^2 * k * floor(n/k).

Original entry on oeis.org

1, 4, 8, 11, 17, 29, 37, 40, 44, 62, 74, 86, 100, 124, 148, 151, 169, 181, 201, 219, 251, 287, 311, 323, 329, 371, 375, 399, 429, 501, 533, 536, 584, 638, 686, 698, 736, 796, 852, 870, 912, 1008, 1052, 1088, 1112, 1184, 1232, 1244, 1252, 1270, 1342, 1384, 1438, 1450, 1522
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 16 2019

Keywords

Comments

Partial sums of A048250.

Crossrefs

Programs

  • Mathematica
    Table[Sum[MoebiusMu[k]^2 k Floor[n/k], {k, 1, n}], {n, 1, 55}]
    nmax = 55; CoefficientList[Series[1/(1 - x) Sum[MoebiusMu[k]^2 k x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Accumulate[Table[Total[Select[Divisors[n], SquareFreeQ]], {n, 1, 100}]] (* Vaclav Kotesovec, Jul 16 2019 *)

Formula

G.f.: (1/(1 - x)) * Sum_{k>=1} mu(k)^2 * k * x^k/(1 - x^k).
a(n) ~ n^2/2. - Vaclav Kotesovec, Jul 16 2019
Showing 1-10 of 16 results. Next