cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A064608 Partial sums of A034444: sum of number of unitary divisors from 1 to n.

Original entry on oeis.org

1, 3, 5, 7, 9, 13, 15, 17, 19, 23, 25, 29, 31, 35, 39, 41, 43, 47, 49, 53, 57, 61, 63, 67, 69, 73, 75, 79, 81, 89, 91, 93, 97, 101, 105, 109, 111, 115, 119, 123, 125, 133, 135, 139, 143, 147, 149, 153, 155, 159, 163, 167, 169, 173, 177, 181, 185, 189, 191, 199, 201
Offset: 1

Views

Author

Labos Elemer, Sep 24 2001

Keywords

Comments

a(n) = Sum_{k<=n} 2^omega(k) where omega(k) is the number of distinct primes in the factorization of k. - Benoit Cloitre, Apr 16 2002
a(n) is the number of (p, q) lattice points that are visible from (0, 0), where p and q satisfy: p >= 1, q >= 1, p * q <= n. - Luc Rousseau, Jul 09 2017

References

  • E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Leipzig 1909 (Chelsea reprint 1953), p. 594.

Crossrefs

Programs

  • Maple
    with(numtheory): A064608:=n->add(mobius(k)^2*floor(n/k), k=1..n): seq(A064608(n), n=1..100); # Wesley Ivan Hurt, Dec 05 2015
  • Mathematica
    a[n_] := Count[Divisors@ n, d_ /; GCD[d, n/d] == 1]; Accumulate@ Array[a, {61}] (* Michael De Vlieger, Oct 21 2015, after Jean-François Alcover at A034444 *)
    Accumulate@ Array[2^PrimeNu[#] &, {61}] (* Amiram Eldar, Oct 21 2019 *)
  • PARI
    { for (n=1, 80, a=sum(k=1, n, moebius(k)^2*floor(n/k)); write("b064608.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 20 2009
    
  • PARI
    a(n)=sum(k=1,sqrtint(n),moebius(k)*(2*sum(l=1,sqrtint(n\(k*k)),n\(k*k*l))-sqrtint(n\(k*k))^2)); \\ More efficient formula for large n values (up to 10^14)
    vector(80,i,a(i)) \\ Jerome Raulin, Nov 01 2015
    
  • Python
    from sympy.ntheory.factor_ import primenu
    def A064608(n): return sum(1<Chai Wah Wu, Sep 07 2023

Formula

a(n) = a(n-1) + A034444(n) = a(n-1) + 2^A001221(n) Sum_{j=1..n} ud(j) where ud(j) = A034444(j) = 2^A001221(n).
a(n) = n*log(n)/zeta(2) + O(n) where zeta(2) = Pi^2/6. - Benoit Cloitre, Apr 16 2002
a(n) = Sum_{k=1..n} mu(k)^2*floor(n/k). - Benoit Cloitre, Apr 16 2002
Mertens's theorem (1874): a(n) = Sum_{k<=n} ud(k) = (n/Zeta(2))*(log(n) + 2*gamma - 1 - 2*Zeta'(2)/Zeta(2)) + O(sqrt(n)*log(n)), where gamma is the Euler-Mascheroni constant A001620. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Sep 07 2002
G.f.: (1/(1 - x))*Sum_{k>=1} mu(k)^2*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 03 2017

A064605 Numbers k such that A064602(k) is divisible by k.

Original entry on oeis.org

1, 2, 8, 74, 146, 150, 158, 307, 526, 541, 16157, 20289, 271343, 953614, 1002122, 2233204, 3015123, 15988923, 48033767, 85110518238
Offset: 1

Views

Author

Labos Elemer, Sep 24 2001

Keywords

Comments

Analogous sequences for various arithmetical functions are A050226, A056650, A064605, A064606, A064607, A064610, A064611, A048290, A062982, A045345.
a(20) > 3*10^10. - Donovan Johnson, Aug 31 2012
a(21) > 10^11, if it exists. - Amiram Eldar, Jan 18 2024

Examples

			Summing divisor-square sums for j = 1..8 gives 1+5+10+21+26+50+50+85 = 248, which is divisible by 8, so 8 is a term and the integer quotient is 31.
		

Crossrefs

Programs

  • Mathematica
    k = 1; lst = {}; s = 0; While[k < 1000000001, s = s + DivisorSigma[2, k]; If[ Mod[s, k] == 0, AppendTo[lst, k]; Print@ k]; k++]; lst (* Robert G. Wilson v, Apr 25 2011 *)

Formula

(Sum_{j=1..k} sigma_2(j)) mod k = A064602(k) mod k = 0.

Extensions

a(15)-a(19) from Donovan Johnson, Jun 21 2010
a(20) from Amiram Eldar, Jan 18 2024

A064611 Partial sum of usigma is divisible by n, where usigma(n) = A034448(n) and summatory-usigma(n) = A064609(n).

Original entry on oeis.org

1, 2, 8, 11, 12, 174, 212, 524, 1567, 14096, 19795, 38466, 42114, 55575, 338809, 498001, 1175281, 2424880, 3994532, 7908519, 48453784, 696840720, 5497869355, 7479239685
Offset: 1

Views

Author

Labos Elemer, Sep 24 2001

Keywords

Comments

Analogous sequences for various arithmetical functions are A050226, A056550, A064605-A064607, A064610, A064612, A048290, A062982, A045345.

Examples

			udivisor sums[=usigma(j) values] from 1 to 8 are added: 1+3+4+5+6+12+8+9=48; it is divisible by 8, thus 8 is here.
		

Crossrefs

Programs

  • Mathematica
    s = Table[DivisorSum[n, # &, CoprimeQ[#, n/#] &], {n, 10^6}]; Module[{a = First@ s, b = {First@ s}}, Do[a += s[[i]]; If[Divisible[a, i], AppendTo[b, i]], {i, 2, Length@ s}]; b] (* Michael De Vlieger, Mar 18 2017 *)

Formula

A064609(n) mod n = 0.

Extensions

a(17)-a(22) from Donovan Johnson, Jul 20 2012
a(23)-a(24) from Amiram Eldar, Mar 17 2019

A064607 Numbers k such that A064604(k) is divisible by k.

Original entry on oeis.org

1, 2, 7, 151, 257, 1823, 3048, 5588, 6875, 7201, 8973, 24099, 5249801, 9177919, 18926164, 70079434, 78647747, 705686794, 2530414370, 3557744074, 25364328389, 32487653727, 66843959963
Offset: 1

Views

Author

Labos Elemer, Sep 24 2001

Keywords

Comments

Analogous sequences for various arithmetical functions are A050226, A056650, A064605-A064607, A064610, A064611, A048290, A062982, A045345.
a(19) > 2*10^9. - Donovan Johnson, Jun 21 2010
a(24) > 10^11, if it exists. - Amiram Eldar, Jan 18 2024

Examples

			Adding 4th-power divisor-sums for j = 1..7 gives 1+17+82+273+626+1394+2402 = 4795 which is divisible by 7, so 7 is a term and the integer quotient is 655.
		

Crossrefs

Programs

  • Mathematica
    k = 1; lst = {}; s = 0; While[k < 1000000001, s = s + DivisorSigma[4, k]; If[ Mod[s, k] == 0, AppendTo[lst, k]; Print@ k]; k++]; lst (* Robert G.Wilson v, Aug 25 2011 *)

Formula

(Sum_{j=1..k} sigma_4(j)) mod k = A064604(k) mod k = 0.

Extensions

a(13)-a(18) from Donovan Johnson, Jun 21 2010
a(19)-a(23) from Amiram Eldar, Jan 18 2024

A064612 Partial sum of bigomega is divisible by n, where bigomega(n)=A001222(n) and summatory-bigomega(n)=A022559(n).

Original entry on oeis.org

1, 4, 5, 2178, 416417176, 416417184, 416417185, 416417186, 416417194, 416417204, 416417206, 416417208, 416417213, 416417214, 416417231, 416417271, 416417318, 416417319, 416417326, 416417335, 416417336, 416417338, 416417339, 416417374
Offset: 1

Views

Author

Labos Elemer, Sep 24 2001

Keywords

Comments

Analogous sequences for various arithmetical functions are A050226, A056650, A064605-A064607, A064610, A064611, A048290, A062982, A045345.
Partial sums of A001222, similarly to summatory A001221 increases like loglog(n), explaining small quotients.
a(25) > 10^13. - Giovanni Resta, Apr 25 2017

Examples

			Sum of bigomega values from 1 to 5 is: 0+0+1+1+2+1=5, which is divisible by n=5, so 5 is here, with quotient=1. For the last value,2178,below 1000000 the quotient is only 3.
		

Crossrefs

Formula

Mod[A022559(n), n]=0

Extensions

a(5)-a(24) from Donovan Johnson, Nov 15 2009

A064606 Numbers k such that A064603(k) is divisible by k.

Original entry on oeis.org

1, 2, 7, 45, 184, 210, 267, 732, 1282, 3487, 98374, 137620, 159597, 645174, 3949726, 7867343, 13215333, 14153570, 14262845, 317186286, 337222295, 2788845412, 10937683400, 72836157215, 95250594634
Offset: 1

Views

Author

Labos Elemer, Sep 24 2001

Keywords

Comments

Analogous sequences for various arithmetical functions are A050226, A056650, A064605-A064607, A064610, A064611, A048290, A062982, A045345.
a(22) > 2*10^9. - Donovan Johnson, Jun 21 2010
a(26) > 10^11, if it exists. - Amiram Eldar, Jan 18 2024

Examples

			Adding divisor-cube sums for j = 1..7 gives 1+9+28+73+126+252+344 = 833 = 7*119, which is divisible by 7, so 7 is a term and the integer quotient is 119.
		

Crossrefs

Programs

Formula

(Sum_{j=1..k} sigma_3(j)) mod k = A064603(k) mod k = 0.

Extensions

a(15)-a(21) from Donovan Johnson, Jun 21 2010
a(22)-a(25) from Amiram Eldar, Jan 18 2024

A344731 Numbers k such that k divides A306069(k).

Original entry on oeis.org

1, 275, 277, 3337, 3353, 3359, 39675, 39689, 472467, 797806459, 9501109507
Offset: 1

Views

Author

Amiram Eldar, May 27 2021

Keywords

Comments

The corresponding quotients A306069(k)/k are 1, 5, 5, 7, 7, 7, 9, 9, 11, 17, 19, ...
a(12) > 7.5*10^10, if it exists.

Examples

			a(1) = 1 since A306069(1) = 1 is divisible by 1.
a(2) = 275 since A306069(275) = 1375 = 5 * 275 is divisible by 275.
		

Crossrefs

The bi-unitary version of A050226.
Similar sequences: A064610, A344732, A344733.

Programs

  • Mathematica
    f[p_, e_] := If[Mod[e, 2] == 1, (e + 1), e]; s[1] = 1; s[n_] := s[n] = s[n - 1] + Times @@ f @@@ FactorInteger[n]; Select[Range[40000], Divisible[s[#], #] &]

A344732 Numbers k such that k divides Sum_{j=1..k} A048105(j).

Original entry on oeis.org

1, 2, 3, 54, 58, 62, 71, 10535, 10541, 10579, 135242, 135243, 1733777, 1733781, 1733895, 1733905, 1733999, 22216757, 22216765, 22216790, 22216808, 22216814, 46745561148, 46745561156
Offset: 1

Views

Author

Amiram Eldar, May 27 2021

Keywords

Comments

The corresponding quotients Sum_{j=1..k} A048105(j)/k are 0, 0, 0, 1, 1, 1, 1, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 9, 9, ...
a(25) > 7.5*10^10, if it exists.

Examples

			a(1) = 1 since A048105(1) = 0 is divisible by 1.
a(4) = 54 since Sum_{j=1..54} A048105(j) = 54 is divisible by 54.
		

Crossrefs

Cf. A048105.
The non-unitary version of A050226.
Similar sequences: A064610, A344731, A344733.

Programs

  • Mathematica
    s[1] = 0; s[n_] := s[n] = s[n - 1] + DivisorSigma[0, n] - 2^PrimeNu[n]; Select[Range[140000], Divisible[s[#], #] &]

A344733 Numbers k such that k divides A327573(k).

Original entry on oeis.org

1, 25, 387, 6063, 1416379, 1416403, 1416411, 331362359, 5068450527
Offset: 1

Views

Author

Amiram Eldar, May 27 2021

Keywords

Comments

The corresponding quotients A327573(k)/k are 1, 3, 5, 7, 11, 11, 11, 15, 17, ...
a(10) > 7.5*10^10, if it exists.

Examples

			a(1) = 1 since A327573(1) = 1 is divisible by 1.
a(2) = 25 since A327573(25) = 75 = 3 * 25 is divisible by 25.
		

Crossrefs

The infinitary version of A050226.
Similar sequences: A064610, A344731, A344732.

Programs

  • Mathematica
    f[p_, e_] := 2^DigitCount[e, 2, 1]; s[1] = 1; s[n_] := s[n] = s[n - 1] + Times @@ f @@@ FactorInteger[n]; Select[Range[1.5*10^6], Divisible[s[#], #] &]

A355544 Numbers k such that the arithmetic mean of the first k squarefree numbers is an integer.

Original entry on oeis.org

1, 3, 6, 37, 75, 668, 1075, 37732, 742767, 1811865, 3140083, 8937770, 108268896, 282951249, 633932500, 1275584757, 60455590365
Offset: 1

Views

Author

Amiram Eldar, Jul 06 2022

Keywords

Comments

Numbers k such that A173143(k) is divisible by k.
The corresponding quotients A173143(k)/k are 1, 2, 4, 29, ..., and the corresponding values of A005117(k) are 1, 3, 7, 59, ... (see the link for more values).

Examples

			3 is a term since the arithmetic mean of the first 3 squarefree numbers, (1+2+3)/3 = 2, is an integer.
		

Crossrefs

Programs

  • Mathematica
    s = Select[Range[10^6], SquareFreeQ]; r = Accumulate[s]/Range[Length[s]]; ind = Position[r, _?IntegerQ] // Flatten
  • PARI
    upto(n) = my(s=0,k=0); forsquarefree(m=1, n, s+=m[1]; k+=1; if(s%k == 0, print1(k, ", "))); \\ Daniel Suteu, Jul 06 2022

Extensions

a(17) from Daniel Suteu, Jul 06 2022
Showing 1-10 of 14 results. Next