cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A064602 Partial sums of A001157: Sum_{j=1..n} sigma_2(j).

Original entry on oeis.org

1, 6, 16, 37, 63, 113, 163, 248, 339, 469, 591, 801, 971, 1221, 1481, 1822, 2112, 2567, 2929, 3475, 3975, 4585, 5115, 5965, 6616, 7466, 8286, 9336, 10178, 11478, 12440, 13805, 15025, 16475, 17775, 19686, 21056, 22866, 24566, 26776, 28458, 30958
Offset: 1

Views

Author

Labos Elemer, Sep 24 2001

Keywords

Comments

In general, for m >= 0 and j >= 0, Sum_{k=1..n} k^m * sigma_j(k) = Sum_{k=1..s} (k^m * F_{m+j}(floor(n/k)) + k^(m+j) * F_m(floor(n/k))) - F_{m+j}(s) * F_m(s), where s = floor(sqrt(n)) and F_m(x) are the Faulhaber polynomials defined as F_m(x) = (Bernoulli(m+1, x+1) - Bernoulli(m+1, 1)) / (m+1). - Daniel Suteu, Nov 27 2020

Crossrefs

Programs

  • Mathematica
    Accumulate@ Array[DivisorSigma[2, #] &, 42] (* Michael De Vlieger, Jan 02 2017 *)
  • PARI
    a(n) = sum(j=1, n, sigma(j, 2)); \\ Michel Marcus, Dec 15 2013
    
  • PARI
    f(n) = n*(n+1)*(2*n+1)/6; \\ A000330
    a(n) = my(s=sqrtint(n)); sum(k=1, s, f(n\k) + k^2*(n\k)) - s*f(s); \\ Daniel Suteu, Nov 26 2020
    
  • Python
    from math import isqrt
    def f(n): return n*(n+1)*(2*n+1)//6
    def a(n):
        s = isqrt(n)
        return sum(f(n//k) + k*k*(n//k) for k in range(1, s+1)) - s*f(s)
    print([a(k) for k in range(1, 43)]) # Michael S. Branicky, Oct 01 2022 after Daniel Suteu

Formula

a(n) = a(n-1) + A001157(n) = Sum_{j=1..n} sigma_2(j) where sigma_2(j) = A001157(j).
a(n) = Sum_{i=1..n} i^2 * floor(n/i). - Enrique Pérez Herrero, Sep 15 2012
G.f.: (1/(1 - x))*Sum_{k>=1} k^2*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 02 2017
a(n) ~ zeta(3) * n^3 / 3. - Vaclav Kotesovec, Sep 02 2018
a(n) = Sum_{k=1..s} (A000330(floor(n/k)) + k^2*floor(n/k)) - s*A000330(s), where s = floor(sqrt(n)). - Daniel Suteu, Nov 26 2020

A064610 Places k where A064608(k) (partial sums of unitary tau) is divisible by k.

Original entry on oeis.org

1, 35, 37, 1015, 27417, 27421, 27449, 27453, 19774739, 530743781, 530743799, 530743807, 530743813
Offset: 1

Views

Author

Labos Elemer, Sep 24 2001

Keywords

Comments

The corresponding quotients are 1, 3, 3, 5, 7, 7, 7, 7, 11, 13, 13, 13, 13, ...
a(14) > 7.5*10^10, if it exists. - Amiram Eldar, Jun 04 2021

Examples

			For n = 37, the sum A064608(37) = 1+2+2+2+2+4+2+...+4+4+4+2 = 111 = 3*37, so 37 is in the sequence.
		

Crossrefs

Cf. A064608.
Analogous "integer-mean" sequences for various arithmetical functions are A050226, A056650, A064605, A064606, A064607, A048290, A063986, A063971, A064911, A062982, A045345.

Programs

  • Mathematica
    s[1] = 1; s[n_] := s[n] = s[n - 1] + 2^PrimeNu[n]; Select[Range[30000], Divisible[s[#], #] &] (* Amiram Eldar, Jun 04 2021 *)

Formula

{n: A064608(n) == 0 (mod n)}.

Extensions

a(10)-a(13) from Donovan Johnson, Jul 20 2012

A064611 Partial sum of usigma is divisible by n, where usigma(n) = A034448(n) and summatory-usigma(n) = A064609(n).

Original entry on oeis.org

1, 2, 8, 11, 12, 174, 212, 524, 1567, 14096, 19795, 38466, 42114, 55575, 338809, 498001, 1175281, 2424880, 3994532, 7908519, 48453784, 696840720, 5497869355, 7479239685
Offset: 1

Views

Author

Labos Elemer, Sep 24 2001

Keywords

Comments

Analogous sequences for various arithmetical functions are A050226, A056550, A064605-A064607, A064610, A064612, A048290, A062982, A045345.

Examples

			udivisor sums[=usigma(j) values] from 1 to 8 are added: 1+3+4+5+6+12+8+9=48; it is divisible by 8, thus 8 is here.
		

Crossrefs

Programs

  • Mathematica
    s = Table[DivisorSum[n, # &, CoprimeQ[#, n/#] &], {n, 10^6}]; Module[{a = First@ s, b = {First@ s}}, Do[a += s[[i]]; If[Divisible[a, i], AppendTo[b, i]], {i, 2, Length@ s}]; b] (* Michael De Vlieger, Mar 18 2017 *)

Formula

A064609(n) mod n = 0.

Extensions

a(17)-a(22) from Donovan Johnson, Jul 20 2012
a(23)-a(24) from Amiram Eldar, Mar 17 2019

A064607 Numbers k such that A064604(k) is divisible by k.

Original entry on oeis.org

1, 2, 7, 151, 257, 1823, 3048, 5588, 6875, 7201, 8973, 24099, 5249801, 9177919, 18926164, 70079434, 78647747, 705686794, 2530414370, 3557744074, 25364328389, 32487653727, 66843959963
Offset: 1

Views

Author

Labos Elemer, Sep 24 2001

Keywords

Comments

Analogous sequences for various arithmetical functions are A050226, A056650, A064605-A064607, A064610, A064611, A048290, A062982, A045345.
a(19) > 2*10^9. - Donovan Johnson, Jun 21 2010
a(24) > 10^11, if it exists. - Amiram Eldar, Jan 18 2024

Examples

			Adding 4th-power divisor-sums for j = 1..7 gives 1+17+82+273+626+1394+2402 = 4795 which is divisible by 7, so 7 is a term and the integer quotient is 655.
		

Crossrefs

Programs

  • Mathematica
    k = 1; lst = {}; s = 0; While[k < 1000000001, s = s + DivisorSigma[4, k]; If[ Mod[s, k] == 0, AppendTo[lst, k]; Print@ k]; k++]; lst (* Robert G.Wilson v, Aug 25 2011 *)

Formula

(Sum_{j=1..k} sigma_4(j)) mod k = A064604(k) mod k = 0.

Extensions

a(13)-a(18) from Donovan Johnson, Jun 21 2010
a(19)-a(23) from Amiram Eldar, Jan 18 2024

A064612 Partial sum of bigomega is divisible by n, where bigomega(n)=A001222(n) and summatory-bigomega(n)=A022559(n).

Original entry on oeis.org

1, 4, 5, 2178, 416417176, 416417184, 416417185, 416417186, 416417194, 416417204, 416417206, 416417208, 416417213, 416417214, 416417231, 416417271, 416417318, 416417319, 416417326, 416417335, 416417336, 416417338, 416417339, 416417374
Offset: 1

Views

Author

Labos Elemer, Sep 24 2001

Keywords

Comments

Analogous sequences for various arithmetical functions are A050226, A056650, A064605-A064607, A064610, A064611, A048290, A062982, A045345.
Partial sums of A001222, similarly to summatory A001221 increases like loglog(n), explaining small quotients.
a(25) > 10^13. - Giovanni Resta, Apr 25 2017

Examples

			Sum of bigomega values from 1 to 5 is: 0+0+1+1+2+1=5, which is divisible by n=5, so 5 is here, with quotient=1. For the last value,2178,below 1000000 the quotient is only 3.
		

Crossrefs

Formula

Mod[A022559(n), n]=0

Extensions

a(5)-a(24) from Donovan Johnson, Nov 15 2009

A064606 Numbers k such that A064603(k) is divisible by k.

Original entry on oeis.org

1, 2, 7, 45, 184, 210, 267, 732, 1282, 3487, 98374, 137620, 159597, 645174, 3949726, 7867343, 13215333, 14153570, 14262845, 317186286, 337222295, 2788845412, 10937683400, 72836157215, 95250594634
Offset: 1

Views

Author

Labos Elemer, Sep 24 2001

Keywords

Comments

Analogous sequences for various arithmetical functions are A050226, A056650, A064605-A064607, A064610, A064611, A048290, A062982, A045345.
a(22) > 2*10^9. - Donovan Johnson, Jun 21 2010
a(26) > 10^11, if it exists. - Amiram Eldar, Jan 18 2024

Examples

			Adding divisor-cube sums for j = 1..7 gives 1+9+28+73+126+252+344 = 833 = 7*119, which is divisible by 7, so 7 is a term and the integer quotient is 119.
		

Crossrefs

Programs

Formula

(Sum_{j=1..k} sigma_3(j)) mod k = A064603(k) mod k = 0.

Extensions

a(15)-a(21) from Donovan Johnson, Jun 21 2010
a(22)-a(25) from Amiram Eldar, Jan 18 2024

A379922 Numbers m that divide the alternating sum Sum_{k=1..m} (-1)^(k+1) * sigma_2(k).

Original entry on oeis.org

1, 2, 3, 42, 329, 633, 1039, 5689, 26621, 39245, 1101875, 1216075, 40088584, 67244920, 104332211, 549673265, 777631064, 19879301756
Offset: 1

Views

Author

Amiram Eldar, Jan 06 2025

Keywords

Comments

Numbers m such that m | A379921(m).
The corresponding quotients, A379921(m)/m, are -1, 2, -2, 120, 5228, ... (see the link for more values).
a(19) > 5*10^10, if it exists.

Crossrefs

Cf. A001157 (sigma_2), A379921.

Programs

  • Mathematica
    With[{m = 40000}, Position[Accumulate[Table[(-1)^n * DivisorSigma[2, n], {n, 1, m}]]/Range[m], _?IntegerQ] // Flatten]
  • PARI
    list(lim) = my(s = 0); for(k = 1, lim, s += (-1)^k * sigma(k, 2); if(!(s % k), print1(k, ", ")));

A379923 Numbers m that divide the alternating sum Sum_{k=1..m} (-1)^k * A000005(k).

Original entry on oeis.org

1, 5, 18, 22, 25, 29, 197, 1350, 1360, 1362, 1368, 1381, 1391, 1395, 10200, 75486, 75490, 557768, 557843, 557853, 557898, 4121846, 4122064, 4122112, 4122222, 30457732, 30457773, 30457835, 30458040, 30458133, 30458138, 30458140, 30458335, 225056911, 225056919, 225056925, 225056989
Offset: 1

Views

Author

Amiram Eldar, Jan 06 2025

Keywords

Comments

Numbers m such that m | A307704(m).
The corresponding quotients, A307704(m)/m, are -1, 0, 1, 1, 1, 1, 2, 3, 3, 3, ... (see the link for more values).
a(38) > 2*10^10, if it exists.

Crossrefs

Programs

  • Mathematica
    With[{m = 10000}, Position[Accumulate[Table[(-1)^n * DivisorSigma[0, n], {n, 1, m}]]/Range[m], _?IntegerQ] // Flatten]
  • PARI
    list(lim) = my(s = 0); for(k = 1, lim, s += (-1)^k * numdiv(k); if(!(s % k), print1(k, ", ")));

A379924 Numbers m that divide the alternating sum Sum_{k=1..m} (-1)^(k+1) * usigma(k).

Original entry on oeis.org

1, 2, 9, 54, 101, 178, 189, 2071, 3070, 9171, 11450, 12794, 21405, 27553, 35285, 251974, 2069863, 2395894, 155931488, 387586437, 758519827, 1202435693, 9859113494, 42703260442
Offset: 1

Views

Author

Amiram Eldar, Jan 06 2025

Keywords

Comments

Numbers m such that m | A370898(m).
The corresponding quotients, A370898(m)/m, are -1, 1, 0, 6, 9, ... (see the link for more values).
a(25) > 5*10^10, if it exists.

Crossrefs

Cf. A034448 (usigma), A370898.

Programs

  • Mathematica
    usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); usigma[1] = 1; With[{m = 260000}, Position[Accumulate[Table[(-1)^n * usigma[n], {n, 1, m}]]/Range[m], _?IntegerQ] // Flatten]
  • PARI
    usigma(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^f[i, 2]); }
    list(lim) = my(s = 0); for(k = 1, lim, s += (-1)^k * usigma(k); if(!(s % k), print1(k, ", ")));

A355544 Numbers k such that the arithmetic mean of the first k squarefree numbers is an integer.

Original entry on oeis.org

1, 3, 6, 37, 75, 668, 1075, 37732, 742767, 1811865, 3140083, 8937770, 108268896, 282951249, 633932500, 1275584757, 60455590365
Offset: 1

Views

Author

Amiram Eldar, Jul 06 2022

Keywords

Comments

Numbers k such that A173143(k) is divisible by k.
The corresponding quotients A173143(k)/k are 1, 2, 4, 29, ..., and the corresponding values of A005117(k) are 1, 3, 7, 59, ... (see the link for more values).

Examples

			3 is a term since the arithmetic mean of the first 3 squarefree numbers, (1+2+3)/3 = 2, is an integer.
		

Crossrefs

Programs

  • Mathematica
    s = Select[Range[10^6], SquareFreeQ]; r = Accumulate[s]/Range[Length[s]]; ind = Position[r, _?IntegerQ] // Flatten
  • PARI
    upto(n) = my(s=0,k=0); forsquarefree(m=1, n, s+=m[1]; k+=1; if(s%k == 0, print1(k, ", "))); \\ Daniel Suteu, Jul 06 2022

Extensions

a(17) from Daniel Suteu, Jul 06 2022
Showing 1-10 of 13 results. Next