A069217 Numbers n such that phi(n) + sigma(n) = n + reversal(n).
1, 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 10301, 10501, 10601, 11311, 11411, 12421, 12721, 12821, 13331, 13831, 13931, 14341, 14741, 15451, 15551, 16061, 16361, 16561, 16661, 17471, 17971, 18181
Offset: 1
Examples
phi(101) + sigma(101) = 202 = 101 + 101 = 101 + reversal(101).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..700
Crossrefs
Contains composite terms, so is strictly different from A002385.
Programs
-
Mathematica
Select[Range[5*10^4], EulerPhi[ # ] + DivisorSigma[1, # ] == # + FromDigits[Reverse[IntegerDigits[ # ]]] &]
Formula
If p is prime and rev(p)=p then p+rev(p)=2p=phi(p)+sigma(p) so all palindromic primes are in the sequence. - Farideh Firoozbakht, Sep 12 2006
Comments