A069237 Composite numbers k such that tau(k) divides phi(k), where tau(k) is the number of divisors of k and phi(k) the Euler totient function.
8, 9, 10, 15, 18, 21, 24, 26, 28, 30, 33, 34, 35, 39, 40, 45, 49, 51, 52, 55, 56, 57, 58, 63, 65, 69, 70, 72, 74, 76, 77, 78, 82, 84, 85, 87, 88, 90, 91, 93, 95, 98, 99, 102, 104, 105, 106, 108, 110, 111, 115, 117, 119, 120, 122, 123, 124, 125, 126, 128, 129, 130, 133
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= n -> not isprime(n) and numtheory:-phi(n) mod numtheory:-tau(n)=0: select(filter, [$4..1000]); # Robert Israel, Jan 05 2018
-
Mathematica
nn=200;Rest[Select[Complement[Range[nn],Prime[Range[PrimePi[nn]]]],Divisible[ EulerPhi[#], DivisorSigma[0,#]]&]] (* Harvey P. Dale, Mar 31 2011 *)
-
PARI
isok(k) = if(k == 1 || isprime(k), 0, my(f = factor(k)); !(eulerphi(f) % numdiv(f))); \\ Amiram Eldar, Apr 19 2025
Comments