cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069241 Number of Hamiltonian paths in the graph on n vertices {1,...,n}, with i adjacent to j iff |i-j| <= 2.

Original entry on oeis.org

1, 1, 1, 3, 6, 10, 17, 28, 44, 68, 104, 157, 235, 350, 519, 767, 1131, 1665, 2448, 3596, 5279, 7746, 11362, 16662, 24430, 35815, 52501, 76956, 112797, 165325, 242309, 355135, 520490, 762830, 1117997, 1638520, 2401384, 3519416, 5157972, 7559393, 11078847
Offset: 0

Views

Author

Don Knuth, Apr 13 2002

Keywords

Comments

Equivalently, the number of bandwidth-at-most-2 arrangements of a straight line of n vertices.

Examples

			For example, the six Hamiltonian paths when n=4 are 1234, 1243, 1324, 1342, 2134, 3124.
		

Crossrefs

Programs

  • Maple
    a:= n-> (Matrix([[1,1,1,0,1]]). Matrix(5, (i,j)-> if i=j-1 then 1 elif j=1 then [3,-3,2,-2,1][i] else 0 fi)^n)[1,3]: seq(a(n), n=0..50); # Alois P. Heinz, Sep 09 2008
  • Mathematica
    a[0] = a[1] = a[2] = 1; a[3] = 3; a[4] = 6; a[n_] := a[n] = 3a[n-1] - 3a[n-2] + 2a[n-3] - 2a[n-4] + a[n-5]; Table[a[n], {n, 0, 38}] (* Jean-François Alcover, Feb 13 2015 *)
    CoefficientList[Series[(3+x+x^2)/(1-x-x^3)-(2-x)/(1-x)^2,{x,0,60}],x] (* or *) LinearRecurrence[{3,-3,2,-2,1},{1,1,1,3,6},60] (* Harvey P. Dale, Apr 07 2019 *)

Formula

a(n) = A003274(n)/2, n > 1.
a(n) = 3*s(n) + s(n-1) + s(n-2) - 2 - n, where s(n) = A000930(n).
G.f.: (3+x+x^2)/(1-x-x^3) - (2-x)/(1-x)^2.
Lim_{n->infinity} a(n+1)/a(n) = A092526 = 1/A263719. - Alois P. Heinz, Apr 15 2018