A069266 Numbers k such that Sum_{d|k} d/core(d) > 2*k, where core(d) is the squarefree part of d.
576, 1296, 2304, 3600, 5184, 7056, 8100, 9216, 11664, 14400, 17424, 20736, 24336, 28224, 32400, 36864, 44100, 46656, 57600, 63504, 69696, 72900, 82944, 90000, 97344, 104976, 108900, 112896, 129600, 147456, 152100, 156816, 166464, 176400, 186624, 202500, 207936
Offset: 1
Examples
3600 is in the sequence as its divisors are 1, 2, 3, 4, 5, 6, 8, 9, 10, ..., 400, 450, 600, 720, 900, 1200, 1800, 3600 and the respective values d/core(d) are 1, 1, 1, 4, 1, 1, 4, 9, ... , 900, 400, 900, 3600. The sum of this latter list is 7722 which is greater than 2*3600. - _David A. Corneth_, Sep 05 2020
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000 (first 5000 terms from Amiram Eldar)
Programs
-
Mathematica
f[p_, e_] := If[OddQ[e], 2*(p^(e + 1) - 1)/(p^2 - 1), (p^(e + 2) + p^e - 2)/(p^2 - 1)]; Select[Range[2, 150000], Times @@ (f @@@ FactorInteger[#]) > 2*# &] (* Amiram Eldar, Sep 05 2020 *)
-
PARI
is(n) = sumdiv(n, d, d/core(d)) > n << 1 \\ David A. Corneth, Sep 05 2020
Formula
Numbers k such that A068976(k) > 2*k.
Extensions
More terms from Amiram Eldar, Sep 05 2020
Comments