A069288 Number of odd divisors of n <= sqrt(n).
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 3, 1, 1, 3, 1, 2, 2, 1, 1, 2, 3, 1, 2, 1, 1, 3, 1, 2, 2, 1, 2, 3, 1, 1, 3, 2, 1, 2, 1, 1, 4
Offset: 1
Keywords
Examples
From _Gus Wiseman_, Feb 11 2021: (Start) The inferior odd divisors for selected n are the columns below: n: 1 9 30 90 225 315 630 945 1575 2835 4410 3465 8190 6930 -------------------------------------------------------------------- 1 3 5 9 15 15 21 27 35 45 63 55 65 77 1 3 5 9 9 15 21 25 35 49 45 63 63 1 3 5 7 9 15 21 27 45 35 45 55 1 3 5 7 9 15 21 35 33 39 45 1 3 5 7 9 15 21 21 35 35 1 3 5 7 9 15 15 21 33 1 3 5 7 9 11 15 21 1 3 5 7 9 13 15 1 3 5 7 9 11 1 3 5 7 9 1 3 5 7 1 3 5 1 3 1 (End)
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Positions of first appearances are A334853.
A055396 selects the least prime index.
A061395 selects the greatest prime index.
- Odd -
A026424 lists numbers with odd Omega.
A027193 counts odd-length partitions.
- Inferior divisors -
A033676 selects the greatest inferior divisor.
A033677 selects the least superior divisor.
A038548 counts inferior divisors.
A060775 selects the greatest strictly inferior divisor.
A063538 lists numbers with a superior prime divisor.
A063539 lists numbers without a superior prime divisor.
A063962 counts inferior prime divisors.
A064052 lists numbers with a properly superior prime divisor.
A140271 selects the least properly superior divisor.
A217581 selects the greatest inferior divisor.
A333806 counts strictly inferior prime divisors.
Programs
-
Haskell
a069288 n = length $ takeWhile (<= a000196 n) $ a182469_row n -- Reinhard Zumkeller, Apr 05 2015
-
Mathematica
odn[n_]:=Count[Divisors[n],?(OddQ[#]&&#<=Sqrt[n ]&)]; Array[odn,100] (* _Harvey P. Dale, Nov 04 2017 *)
-
PARI
a(n) = my(ir = sqrtint(n)); sumdiv(n, d, (d % 2) * (d <= ir)); \\ Michel Marcus, Jan 14 2014
Formula
G.f.: Sum_{n>=1} 1/(1-q^(2*n-1)) * q^((2*n-1)^2). [Joerg Arndt, Mar 04 2010]
Comments