cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069322 Square array read by antidiagonals of floor[(n+k)^(n+k)/(n^n*k^k)].

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 6, 6, 1, 1, 9, 16, 9, 1, 1, 12, 28, 28, 12, 1, 1, 14, 45, 64, 45, 14, 1, 1, 17, 65, 119, 119, 65, 17, 1, 1, 20, 89, 198, 256, 198, 89, 20, 1, 1, 23, 117, 307, 484, 484, 307, 117, 23, 1, 1, 25, 149, 449, 837, 1024, 837, 449, 149, 25, 1, 1, 28, 184, 629
Offset: 0

Views

Author

Henry Bottomley, Mar 14 2002

Keywords

Comments

T(n,k)*sqrt(3)/(n*k*Pi) provides a rough approximation for A067059.
a(n,k) is an analog of the binomial coefficients over transformations instead of permutations. - Chad Brewbaker, Nov 25 2013

Examples

			Rows start: 1,1,1,1,1,1,...; 1,4,6,9,12,14,...; 1,6,16,28,45,65,...; 1,9,28,64,119,198,...; etc. T(3,5)=floor[8^8/(3^3*5^5)]=floor[16777216 /84375]=floor[198.84...]=198.
		

Crossrefs

Initial columns and rows are A000012 and A060644, main diagonal is A000302.

Programs

  • Mathematica
    t[n_, 0] := 1; t[n_, n_] := 1; t[n_, k_] := Floor[(n^n)/((k^k)*((n - k)^(n - k)))];  Table[t[n, k], {n, 0, 20}, {k, 0, n}] // Flatten (* G. C. Greubel, Apr 22 2018 *)
  • PARI
    for(n=0,15, for(k=0,n, print1(if(k==0, 1, if(k==n,1,floor((n^n)/(( k^k)*((n - k)^(n - k)))))), ", "))) \\ G. C. Greubel, Apr 22 2018
  • Ruby
    def transitorial(n)
        return n**n
    end
    def transnomial(n,k)
           return transitorial(n)/(transitorial(k) *transitorial(n-k))
    end
    0.upto(15) do |i|
       0.upto(i) do |j|
           print transnomial(i,j).to_s + " "
       end
       puts ""
    end # Chad Brewbaker, Nov 25 2013
    

Formula

a(n,k) = (n^n) /((k^k)*((n-k)^(n-k))). - Chad Brewbaker, Nov 25 2013