A069352 Total number of prime factors of 3-smooth numbers.
0, 1, 1, 2, 2, 3, 2, 3, 4, 3, 4, 3, 5, 4, 5, 4, 6, 5, 4, 6, 5, 7, 6, 5, 7, 6, 5, 8, 7, 6, 8, 7, 6, 9, 8, 7, 6, 9, 8, 7, 10, 9, 8, 7, 10, 9, 8, 11, 7, 10, 9, 8, 11, 10, 9, 12, 8, 11, 10, 9, 12, 8, 11, 10, 13, 9, 12, 11, 10, 13, 9, 12, 11, 14, 10, 13, 9, 12, 11, 14, 10, 13, 12, 15, 11
Offset: 1
Keywords
Links
- Zak Seidov, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a069352 = a001222 . a003586 -- Reinhard Zumkeller, May 16 2015
-
Mathematica
smoothNumbers[p_, max_] := Module[{a, aa, k, pp, iter}, k = PrimePi[p]; aa = Array[a, k]; pp = Prime[Range[k]]; iter = Table[{a[j], 0, PowerExpand @ Log[pp[[j]], max/Times @@ (Take[pp, j-1]^Take[aa, j-1])]}, {j, 1, k}]; Table[Times @@ (pp^aa), Sequence @@ iter // Evaluate] // Flatten // Sort]; PrimeOmega /@ smoothNumbers[3, 10^5] (* Jean-François Alcover, Nov 11 2016 *)
Formula
a(n) = i+j for 3-smooth numbers n = 2^i*3^j (A003586).
Extensions
Edited by N. J. A. Sloane, Oct 27 2008 at the suggestion of R. J. Mathar.
Comments