A086413 Duplicate of A069352.
0, 1, 1, 2, 2, 3, 2, 3, 4, 3, 4, 3, 5, 4, 5, 4, 6, 5, 4, 6, 5, 7, 6, 5, 7, 6, 5, 8, 7, 6, 8, 7, 6, 9, 8
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
import Data.Set (singleton, deleteFindMin, insert) a022328 n = a022328_list !! (n-1) (a022328_list, a022329_list) = unzip $ f $ singleton (1, (0, 0)) where f s = (i, j) : f (insert (2 * y, (i + 1, j)) $ insert (3 * y, (i, j + 1)) s') where ((y, (i, j)), s') = deleteFindMin s -- Reinhard Zumkeller, Nov 19 2015, May 16 2015
t = Sort[Flatten[Table[2^i 3^j, {i, 0, 200}, {j, 0, 200}]]]; Table[IntegerExponent[t[[n]], 2], {n, 1, 200}] (* A022338 *) (* Clark Kimberling, Mar 18 2015 *)
from sympy import integer_log def A022328(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) return (~(m:=bisection(f,n,n))&m-1).bit_length() # Chai Wah Wu, Sep 15 2024
a022329 n = a022329_list !! (n-1) -- Where a022329_list is defined in A022328. -- Reinhard Zumkeller, Nov 19 2015, May 16 2015
IntegerExponent[Select[Range[10^5], # == 2^IntegerExponent[#, 2] * 3^IntegerExponent[#, 3] &], 3] (* Amiram Eldar, Apr 15 2024 *)
from sympy import integer_log def A022329(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) return integer_log((m:=bisection(f,n,n))>>(~m&m-1).bit_length(),3)[0] # Chai Wah Wu, Sep 15 2024
PrimeOmega @ Select[Range[3000], Last @ Map[First, FactorInteger[#]] <= 5 &] (* Amiram Eldar, Feb 07 2020 *)
N:= 10^20: # to include all 3-smooth numbers <= N S:= [seq(seq([2^i*3^j,max(i,j)], j=0..floor(log[3](N/2^i))),i=0..floor(log[2](N)))]: map(p -> p[2], sort(S,(a,b) -> a[1]Robert Israel, Aug 10 2014
M = 10^5; (* M = 10^5 gives 101 terms *) S = Flatten[Table[Table[{2^i*3^j, Max[i, j]}, {j, 0, Floor[Log[3, M/2^i]]}], {i, 0, Floor[Log[2, M]]}], 1] // Sort; S[[All, 2]] (* Jean-François Alcover, Mar 03 2019, after Robert Israel *)
a036667 n = a036667_list !! (n-1) a036667_list = filter (even . flip mod 2 . a001222) a003586_list -- Reinhard Zumkeller, May 16 2015
max = 40000; Reap[Do[k = 2^i 3^j; If[k <= max && EvenQ[i+j], Sow[k]], {i, 0, Log[2, max] // Ceiling}, {j, 0, Log[3, max] // Ceiling}]][[2, 1]] // Union (* Jean-François Alcover, Aug 04 2018 *)
from sympy import integer_log def A036667(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum((x//3**i).bit_length()+(i&1^1)>>1 for i in range(integer_log(x, 3)[0]+1)) return bisection(f,n,n) # Chai Wah Wu, Jan 30 2025
s = {}; m = 12; Do[n = 5^k; While[n <= 5^m, AppendTo[s, n]; n *= 3], {k, 0, m}]; PrimeOmega[Union[s]] (* Amiram Eldar, Feb 06 2020 *)
s = {}; m = 12; Do[n = 3^k; While[n <= 3^m, AppendTo[s, n]; n*=2], {k, 0, m}]; maxExp[1] = 0; maxExp[n_] := Min @@ Last /@ FactorInteger[n]; maxExp /@ Union[s] (* Amiram Eldar, Jan 29 2020 *)
s = {}; m = 12; Do[n = 3^k; While[n <= 3^m, AppendTo[s, n]; n*=2], {k, 0, m}]; PrimeNu /@ Union[s] (* Amiram Eldar, Jan 29 2020 *)
1 is a term because 2^0*3^0 - (0+0) = 2^1*3^0 - (1+0) = 1. 2 is a term because 2^2*3^0 - (2+0) = 2^0*3^1 - (0+1) = 2. 4 is a term because 2^1*3^1 - (1+1) = 4.
With[{nn=20},Take[Flatten[Table[2^i 3^j-i-j,{i,0,nn},{j,0,nn}]]//Union,60]] (* Harvey P. Dale, Aug 29 2022 *)
Comments