cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A112753 Number of distinct prime factors of n-th number of the form 3^i*5^j.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 18 2005

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=120},Take[PrimeNu/@Union[Flatten[{3^#[[1]] 5^#[[2]],5^#[[1]] 3^#[[2]]}&/@Tuples[Range[0,nn],2]]],nn]] (* Harvey P. Dale, Nov 29 2013 *)

Formula

a(n) = A001221(A003593(n)) = 2 - 0^A022336(n) + 0^A022337(n);
a(n) <= 2.

A112758 Number of distinct prime factors of n-th 5-smooth number.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 1, 3, 1, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 1, 3, 2, 2, 2, 3, 1, 1, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 3, 1, 2, 1, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 3, 3, 2, 2, 1, 3, 2, 3, 1, 2, 2, 2, 3, 1, 3, 2, 2, 3, 2, 3, 3, 2, 2, 1, 3, 2, 2, 3, 2, 2, 2, 2, 3, 3, 2, 3, 2, 2, 3, 2, 3, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 18 2005

Keywords

Crossrefs

Programs

  • Mathematica
    aa = {}; Do[If[8 n - EulerPhi[30 n] == 0, AppendTo[aa, n]], {n, 1, 100}]; PrimeNu[aa]  (* G. C. Greubel, May 07 2017 *)
    PrimeNu[#]&/@Select[Range[2000],Max[FactorInteger[#][[All,1]]]<6&] (* Harvey P. Dale, Apr 12 2020 *)

Formula

a(n) = A001221(A051037(n)).
a(n) = 3 - 0^A112760(n) - 0^A112761(n) - 0^A112762(n).
a(n) <= 3.

A086418 Sum of distinct prime factors of 3-smooth numbers.

Original entry on oeis.org

0, 2, 3, 2, 5, 2, 3, 5, 2, 5, 5, 3, 2, 5, 5, 5, 2, 5, 3, 5, 5, 2, 5, 5, 5, 5, 3, 2, 5, 5, 5, 5, 5, 2, 5, 5, 3, 5, 5, 5, 2, 5, 5, 5, 5, 5, 5, 2, 3, 5, 5, 5, 5, 5, 5, 2, 5, 5, 5, 5, 5, 3, 5, 5, 2, 5, 5, 5, 5, 5, 5, 5, 5, 2, 5, 5, 3, 5, 5, 5, 5, 5, 5, 2, 5, 5, 5, 5, 5, 5, 5, 5, 3, 5, 2, 5, 5, 5, 5, 5, 5, 5
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 18 2003

Keywords

Crossrefs

Programs

  • Mathematica
    s = {}; m = 12; Do[n = 3^k; While[n <= 3^m, AppendTo[s, n]; n*=2], {k, 0, m}]; sopf[1] = 0; sopf[n_] := Plus @@ First@Transpose @ FactorInteger[n]; sopf /@ Union[s] (* Amiram Eldar, Jan 29 2020 *)

Formula

a(n) = A008472(A003586(n));
a(n) = 2*0^(0^A022328(n)) + 3*0^(0^A022329(n)).
Showing 1-3 of 3 results.