cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A069352 Total number of prime factors of 3-smooth numbers.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 2, 3, 4, 3, 4, 3, 5, 4, 5, 4, 6, 5, 4, 6, 5, 7, 6, 5, 7, 6, 5, 8, 7, 6, 8, 7, 6, 9, 8, 7, 6, 9, 8, 7, 10, 9, 8, 7, 10, 9, 8, 11, 7, 10, 9, 8, 11, 10, 9, 12, 8, 11, 10, 9, 12, 8, 11, 10, 13, 9, 12, 11, 10, 13, 9, 12, 11, 14, 10, 13, 9, 12, 11, 14, 10, 13, 12, 15, 11
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 18 2002

Keywords

Comments

a(n) = A001222(A003586(n));
a(n) = A022328(n) + A022329(n);
A086414(n) <= A086415(n) <= a(n).

Crossrefs

Programs

  • Haskell
    a069352 = a001222 . a003586  -- Reinhard Zumkeller, May 16 2015
  • Mathematica
    smoothNumbers[p_, max_] := Module[{a, aa, k, pp, iter}, k = PrimePi[p]; aa = Array[a, k]; pp = Prime[Range[k]]; iter = Table[{a[j], 0, PowerExpand @ Log[pp[[j]], max/Times @@ (Take[pp, j-1]^Take[aa, j-1])]}, {j, 1, k}]; Table[Times @@ (pp^aa), Sequence @@ iter // Evaluate] // Flatten // Sort]; PrimeOmega /@ smoothNumbers[3, 10^5] (* Jean-François Alcover, Nov 11 2016 *)

Formula

a(n) = i+j for 3-smooth numbers n = 2^i*3^j (A003586).
a(n) = A001222(A033845(n))-2. - Enrique Pérez Herrero, Jan 04 2012

Extensions

Edited by N. J. A. Sloane, Oct 27 2008 at the suggestion of R. J. Mathar.

A086414 Minimal exponent in prime factorization of 3-smooth numbers.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 2, 1, 4, 1, 1, 3, 5, 2, 1, 1, 6, 2, 4, 1, 2, 7, 2, 1, 1, 3, 5, 8, 2, 2, 1, 3, 1, 9, 2, 3, 6, 1, 3, 2, 10, 2, 4, 1, 1, 3, 3, 11, 7, 2, 4, 2, 1, 3, 4, 12, 1, 2, 4, 3, 1, 8, 3, 5, 13, 2, 2, 4, 4, 1, 1, 3, 5, 14, 3, 2, 9, 4, 5, 1, 2, 3, 5, 15, 4, 2, 1, 4, 6, 1, 3, 3, 10, 5, 16, 5, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 18 2003

Keywords

Crossrefs

Programs

  • Mathematica
    s = {}; m = 12; Do[n = 3^k; While[n <= 3^m, AppendTo[s, n]; n*=2], {k, 0, m}]; maxExp[1] = 0; maxExp[n_] := Min @@ Last /@ FactorInteger[n]; maxExp /@ Union[s] (* Amiram Eldar, Jan 29 2020 *)

Formula

a(n) = A051904(A003586(n));
a(n) <= A086415(n) <= A069352(n).

A086416 Number of divisors of 3-smooth numbers.

Original entry on oeis.org

1, 2, 2, 3, 4, 4, 3, 6, 5, 6, 8, 4, 6, 9, 10, 8, 7, 12, 5, 12, 12, 8, 15, 10, 14, 16, 6, 9, 18, 15, 16, 20, 12, 10, 21, 20, 7, 18, 24, 18, 11, 24, 25, 14, 20, 28, 24, 12, 8, 27, 30, 21, 22, 32, 30, 13, 16, 30, 35, 28, 24, 9, 36, 36, 14, 24, 33, 40, 35, 26, 18, 40, 42, 15, 32
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 18 2003

Keywords

Crossrefs

Programs

  • Mathematica
    DivisorSigma[0, Select[Range[10000], # == 2^IntegerExponent[#, 2] * 3^IntegerExponent[#, 3] &]] (* Amiram Eldar, Apr 15 2024 *)

Formula

a(n) = A000005(A003586(n)).
a(n) = if A086414(n) = A086415(n) then A086414(n)+1 else (A086414(n)+1)*(A086415(n)+1).
a(n) = (A022328(n)+1)*(A022329(n)+1).

A352072 a(n) = least k such that A003586(n) | 12^k.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 3, 3, 2, 2, 3, 3, 2, 4, 3, 3, 4, 2, 4, 3, 3, 5, 4, 3, 4, 4, 3, 5, 5, 3, 4, 6, 4, 3, 5, 5, 4, 4, 6, 5, 3, 5, 6, 7, 4, 4, 6, 5, 4, 5, 6, 7, 5, 4, 6, 6, 8, 4, 5, 7, 7, 5, 4, 6, 6, 8, 5, 5, 7, 7, 6, 9, 4, 6, 7, 8, 5, 5, 8, 7, 6, 9
Offset: 1

Views

Author

Michael De Vlieger, Mar 08 2022

Keywords

Comments

Also, number of digits in the duodecimal expansion of terminating unit fractions 1/A003586.

Examples

			a(1) = 0 since A003586(1) = 1 | 12^0.
a(2) = 1 since A003586(2) = 2 | 12^1; 1/2 expanded in base 12 = .6.
a(6) = 2 since A003586(6) = 8 | 12^2; 1/8 in base 12 = .16.
a(12) = 3 since A003586(12) = 27 | 12^3; 1/27 in base 12 = .054, etc.
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Chapter IX: The Representation of Numbers by Decimals, Theorem 136. 8th ed., Oxford Univ. Press, 2008, 144-145.

Crossrefs

Programs

  • Mathematica
    With[{nn = 40000}, Sort[Join @@ Table[{2^a*3^b, Max[Ceiling[a/2], b]}, {a, 0, Log2[nn]}, {b, 0, Log[3, nn/(2^a)]}] ][[All, -1]] ]

A352218 a(n) = least k such that A003592(n) | 20^k.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 2, 3, 2, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 5, 4, 4, 3, 3, 5, 4, 4, 3, 3, 6, 4, 5, 5, 4, 3, 6, 4, 5, 5, 4, 3, 7, 4, 6, 5, 5, 6, 4, 7, 4, 6, 5, 5, 6, 4, 8, 4, 7, 5, 6, 6, 5, 8, 7, 4, 7, 5, 6, 6, 5, 9, 7, 4, 8, 5, 7, 6, 6, 9, 7, 5, 8
Offset: 1

Views

Author

Michael De Vlieger, Mar 08 2022

Keywords

Comments

Also, number of digits in the vigesimal (base 20) expansion of terminating unit fractions 1/A003592.

Examples

			a(1) = 0 since A003592(1) = 1 | 20^0.
a(4) = 1 since A003592(4) = 5 | 20^1; 1/5 in base 20 = 0.4.
a(5) = 2 since A003592(5) = 8 | 20^2; 1/8 in base 20 = 0.2a, where "a" is digit 10, etc.
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Chapter IX: The Representation of Numbers by Decimals, Theorem 136. 8th ed., Oxford Univ. Press, 2008, 144-145.

Crossrefs

Programs

  • Mathematica
    With[{nn = 360000}, Sort[Join @@ Table[{2^a*5^b, Max[Ceiling[a/2], b]}, {a, 0, Log2[nn]}, {b, 0, Log[5, nn/(2^a)]}]][[All, -1]] ]

A352219 a(n) is the least k such that A051037(n) | 60^k.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 3, 1, 3, 2, 2, 2, 2, 2, 3, 1, 3, 2, 2, 2, 4, 2, 3, 2, 3, 2, 3, 4, 3, 2, 2, 3, 4, 2, 3, 2, 3, 2, 2, 5, 3, 4, 3, 3, 2, 3, 4, 2, 3, 4, 2, 4, 3, 2, 3, 5, 3, 5, 3, 3, 2, 4, 4, 4, 3, 2, 6, 3, 4, 3, 4, 3, 2, 3, 5, 3, 5
Offset: 1

Views

Author

Michael De Vlieger, Mar 08 2022

Keywords

Comments

Also, number of digits in the sexagesimal expansion of terminating unit fractions 1/A051037.

Examples

			a(1) = 0 since A051037(1) = 1 | 60^0.
a(2) = 1 since A051037(2) = 2 | 60^1; 1/2 in base 60 is represented by digit 30 after the radix point ":", i.e., :30.
a(7) = 2 since A051037(7) = 8 | 60^2; 1/8 in base 60 is :7,30, etc.
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Chapter IX: The Representation of Numbers by Decimals, Theorem 136. 8th ed., Oxford Univ. Press, 2008, 144-145.

Crossrefs

Programs

  • Mathematica
    With[{nn = 1024}, Sort[Flatten[Table[{2^a * 3^b * 5^c, Max[Ceiling[a/2], b, c]}, {a, 0, Log2[nn]}, {b, 0, Log[3, nn/(2^a)]}, {c, 0, Log[5, nn/(2^a*3^b)]}], 2]][[All, -1]] ]

Formula

a(n) ≍ n^(1/3), with lim sup a(n)/n^(1/3) being (6*log(2)*log(3)*log(5))^(1/3)/log(3) = 1.770... where A051037(n) is a power of 3 and the lim inf being (6*log(2)*log(3)*log(5))^(1/3)/log(60) = 0.4749... where A051037(n) is a power of 60. - Charles R Greathouse IV, Mar 08 2022
Showing 1-6 of 6 results.