cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A022337 Exponent of 5 (value of j) in n-th number of form 3^i*5^j.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 2, 0, 3, 1, 2, 0, 3, 1, 4, 2, 0, 3, 1, 4, 2, 0, 5, 3, 1, 4, 2, 0, 5, 3, 1, 6, 4, 2, 0, 5, 3, 1, 6, 4, 2, 0, 7, 5, 3, 1, 6, 4, 2, 0, 7, 5, 3, 1, 8, 6, 4, 2, 0, 7, 5, 3, 1, 8, 6, 4, 2, 0, 9, 7, 5, 3, 1, 8, 6, 4, 2, 0, 9, 7, 5, 3, 1, 10, 8, 6, 4, 2, 0, 9, 7, 5, 3, 1, 10, 8, 6, 4, 2, 0, 11, 9, 7, 5
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    s = {}; m = 12; Do[n = 5^k; While[n <= 5^m, AppendTo[s, n]; n *= 3], {k, 0, m}]; IntegerExponent[#, 5] & /@ Union[s] (* Amiram Eldar, Feb 06 2020 *)

Formula

a(n) = A112765(A003593(n)) = A112754(n) - A022336(n). - Reinhard Zumkeller, Sep 18 2005

A022336 Exponent of 3 (value of i) in n-th number of form 3^i*5^j.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 2, 1, 4, 0, 3, 2, 5, 1, 4, 0, 3, 6, 2, 5, 1, 4, 7, 0, 3, 6, 2, 5, 8, 1, 4, 7, 0, 3, 6, 9, 2, 5, 8, 1, 4, 7, 10, 0, 3, 6, 9, 2, 5, 8, 11, 1, 4, 7, 10, 0, 3, 6, 9, 12, 2, 5, 8, 11, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 2, 5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2, 5, 8, 11, 14, 1, 4, 7
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    s = {}; m = 12; Do[n = 5^k; While[n <= 5^m, AppendTo[s, n]; n *= 3], {k, 0, m}]; IntegerExponent[#, 3] & /@ Union[s] (* Amiram Eldar, Feb 06 2020 *)

Formula

a(n) = A007949(A003593(n)) = A112754(n) - A022337(n). - Reinhard Zumkeller, Sep 18 2005

A112759 Total number of prime factors of n-th 5-smooth number.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 3, 2, 2, 3, 2, 4, 3, 3, 4, 2, 3, 3, 5, 4, 4, 3, 5, 3, 4, 4, 6, 5, 3, 5, 4, 4, 6, 4, 5, 5, 3, 7, 4, 6, 4, 6, 5, 5, 7, 5, 6, 4, 6, 5, 4, 8, 5, 7, 5, 7, 6, 6, 4, 8, 6, 5, 7, 5, 7, 6, 5, 9, 6, 8, 6, 4, 8, 7, 5, 7, 6, 5, 9, 7, 6, 8, 6, 8, 7, 6, 10, 7, 5, 9, 7, 6, 5, 9, 8, 6, 8, 7, 6, 10, 8, 7, 9, 7
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 18 2005

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeOmega @ Select[Range[3000], Last @ Map[First, FactorInteger[#]] <= 5 &] (* Amiram Eldar, Feb 07 2020 *)

Formula

a(n) = A001222(A051037(n));
a(n) = A112760(n) + A112761(n) + A112762(n).

A112753 Number of distinct prime factors of n-th number of the form 3^i*5^j.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 18 2005

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=120},Take[PrimeNu/@Union[Flatten[{3^#[[1]] 5^#[[2]],5^#[[1]] 3^#[[2]]}&/@Tuples[Range[0,nn],2]]],nn]] (* Harvey P. Dale, Nov 29 2013 *)

Formula

a(n) = A001221(A003593(n)) = 2 - 0^A022336(n) + 0^A022337(n);
a(n) <= 2.

A356242 a(n) is the number of Fermat numbers dividing n, counted with multiplicity.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 1, 0, 0, 2, 0, 1, 2, 0, 1, 1, 0, 0, 1, 2, 0, 3, 0, 0, 2, 0, 0, 1, 1, 1, 2, 0, 0, 1, 1, 0, 1, 0, 0, 3, 0, 0, 1, 0, 2, 2, 0, 0, 3, 1, 0, 1, 0, 0, 2, 0, 0, 2, 0, 1, 1, 0, 1, 1, 1, 0, 2, 0, 0, 3, 0, 0, 1, 0, 1, 4, 0, 0, 1, 2, 0, 1
Offset: 1

Views

Author

Amiram Eldar, Jul 30 2022

Keywords

Comments

The multiplicity of a divisor d (not necessarily a prime) of n is defined in A169594 (see also the first formula).
A000244(n) is the least number k such that a(k) = n.
The asymptotic density of occurrences of 0 is 1/2.
The asymptotic density of occurrences of 1 is (1/2) * Sum_{k>=0} 1/(2^(2^k)+1) = (1/2) * A051158 = 0.2980315860... .

Crossrefs

Cf. A080307 (positions of nonzeros), A080308 (positions of 0's).

Programs

  • Mathematica
    f = Table[(2^(2^n) + 1), {n, 0, 5}]; a[n_] := Total[IntegerExponent[n, f]]; Array[a, 100]

Formula

a(n) = Sum_{k>=1} v(A000215(k), n), where v(m, n) is the exponent of the largest power of m that divides n.
a(A000215(n)) = 1.
a(A000244(n)) = a(A000351(n)) = a(A001026(n)) = n.
a(A003593(n)) = A112754(n).
a(n) >= A356241(n).
a(A051179(n)) = n.
a(A080307(n)) > 0 and a(A080308(n)) = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=0} 1/(2^(2^k)) = 0.8164215090... (A007404).
Showing 1-5 of 5 results.