cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069396 Half the number of 3 X n binary arrays with a path of adjacent 1's and a path of adjacent 0's from top row to bottom row.

Original entry on oeis.org

1, 25, 377, 4541, 48329, 476389, 4461489, 40306317, 354713977, 3060942133, 26020259201, 218626028573, 1820140085705, 15043088032837, 123602247055953, 1010793162739629, 8234370308667673, 66870924588036181
Offset: 2

Views

Author

R. H. Hardin, Mar 22 2002

Keywords

Crossrefs

Cf. 1 X n A000225, 2 X n A016269, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x^2*(2*x+1)^2/(1-8*x)/(2*x^2-7*x+1)/(4*x^2-6*x+1))); // G. C. Greubel, Apr 22 2018
  • Mathematica
    Drop[CoefficientList[Series[x^2*(2*x+1)^2/(1-8*x)/(2*x^2-7*x + 1)/(4*x^2 - 6*x + 1), {x, 0, 50}], x], 2] (* G. C. Greubel, Apr 22 2018 *)
  • PARI
    x='x+O('x^30); Vec(x^2*(2*x+1)^2/(1-8*x)/(2*x^2-7*x+1)/(4*x^2 -6*x+1)) \\ G. C. Greubel, Apr 22 2018
    

Formula

G.f.: x^2*(2*x+1)^2/(1-8*x)/(2*x^2-7*x+1)/(4*x^2-6*x+1). - Vladeta Jovovic, Jul 02 2003
2*a(n) = 8^n+A084326(n+1) -2*A186446(n). - R. J. Mathar, May 09 2023