A069429 Half the number of 3 X n binary arrays with no path of adjacent 1's or adjacent 0's from top row to bottom row.
3, 16, 84, 440, 2304, 12064, 63168, 330752, 1731840, 9068032, 47480832, 248612864, 1301753856, 6816071680, 35689414656, 186872201216, 978475548672, 5123364487168, 26826284728320, 140464250421248, 735480363614208, 3851025180000256, 20164229625544704, 105581277033267200
Offset: 1
Examples
From _Andrew Howroyd_, Oct 27 2020: (Start) Some of the 2*a(2) = 32 arrays are: 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 0 1 1 (End)
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-4).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{6, -4}, {3, 16}, 100] (* Jean-François Alcover, Nov 01 2020 *)
-
PARI
Vec((3 - 2*x)/(1 - 6*x + 4*x^2) + O(x^30)) \\ Andrew Howroyd, Oct 27 2020
-
PARI
a(n) = 2^(n-1)*fibonacci(2*n+2) \\ Andrew Howroyd, Oct 27 2020
Formula
Empirical G.f.: x*(3-2*x)/(1-6*x+4*x^2). - Colin Barker, Feb 22 2012
From Andrew Howroyd, Oct 27 2020: (Start)
a(n) = 2^(n-1)*Fibonacci(2*n+2) = A084326(n+1)/2. (End)
Extensions
Terms a(21) and beyond from Andrew Howroyd, Oct 27 2020