cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069429 Half the number of 3 X n binary arrays with no path of adjacent 1's or adjacent 0's from top row to bottom row.

Original entry on oeis.org

3, 16, 84, 440, 2304, 12064, 63168, 330752, 1731840, 9068032, 47480832, 248612864, 1301753856, 6816071680, 35689414656, 186872201216, 978475548672, 5123364487168, 26826284728320, 140464250421248, 735480363614208, 3851025180000256, 20164229625544704, 105581277033267200
Offset: 1

Views

Author

R. H. Hardin, Mar 22 2002

Keywords

Examples

			From _Andrew Howroyd_, Oct 27 2020: (Start)
Some of the 2*a(2) = 32 arrays are:
  0 0   0 0   0 0   0 1   0 1   0 0   0 1
  0 0   0 1   1 1   1 0   1 0   1 1   1 0
  1 1   1 1   1 1   1 1   0 1   0 0   1 1
(End)
		

Crossrefs

Cf. 2 X n A000079, n X 1 A000225, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.
Cf. A084326.

Programs

Formula

Empirical G.f.: x*(3-2*x)/(1-6*x+4*x^2). - Colin Barker, Feb 22 2012
Empirical: a(n) = 3*A084326(n) - 2*A084326(n-1). - R. J. Mathar, Nov 09 2018
From Andrew Howroyd, Oct 27 2020: (Start)
The above conjectures are true and follow from formulas given in A069361 and A069396.
a(n) = (8^n)/2 - A069361(n) + A069396(n).
a(n) = 2^(n-1)*Fibonacci(2*n+2) = A084326(n+1)/2. (End)

Extensions

Terms a(21) and beyond from Andrew Howroyd, Oct 27 2020