A069466 Triangle T(n, k) of numbers of square lattice walks that start and end at origin after 2*n steps and contain exactly k steps to the east, possibly touching origin at intermediate stages.
1, 2, 2, 6, 24, 6, 20, 180, 180, 20, 70, 1120, 2520, 1120, 70, 252, 6300, 25200, 25200, 6300, 252, 924, 33264, 207900, 369600, 207900, 33264, 924, 3432, 168168, 1513512, 4204200, 4204200, 1513512, 168168, 3432, 12870, 823680, 10090080, 40360320, 63063000, 40360320, 10090080, 823680, 12870
Offset: 0
Examples
Triangle begins: 1, 2, 2, 6, 24, 6, 20, 180, 180, 20, 70, 1120, 2520, 1120, 70, 252, 6300, 25200, 25200, 6300, 252 ... T(4,2) = 2520 because there are 2520 distinct lattice walks of length 2*4=8 starting and ending at the origin and containing exactly 2 steps to the east. For T(2,k), the lattice-path words are: T(2,0):{EEWW, WEEW, WWEE, EWWE, WEWE, EWEW} T(2,1):{NESW, NEWS, NSEW, NSWE, NWES, NWSE, ENSW, ENWS, ESNW, ESWN, EWNS, EWSN, SNEW, SNWE, SENW, SEWN, SWNE, SWEN, WNES, WNSE, WENS, WESN, WSNE, WSEN} T(2,2):{NNSS, SNNS, SSNN, NSSN, SNSN, NSNS}
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..1325 (Rows n=0..50, flattened)
- A. Bostan, Calcul Formel pour la Combinatoire des Marches, Habilitation à Diriger des Recherches, Université Paris 13, 2017, page 11.
- G. Pólya, Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz, Mathematische Annalen, 84 (1921), 149-160.
Crossrefs
Programs
-
GAP
T:=Flat(List([0..8],n->List([0..n],k->Binomial(2*n,n)*(Binomial(n,k))^2))); # Muniru A Asiru, Oct 21 2018
-
Maple
T:=(n,k)->binomial(2*n,n)*(binomial(n,k))^2: seq(seq(T(n,k),k=0..n),n=0..8); # Muniru A Asiru, Oct 21 2018
-
Mathematica
T[k_, r_] := Binomial[2k, k]*Binomial[k, r]^2; Table[T[k, r], {k, 0, 8}, {r, 0, k}] // Flatten (* Jean-François Alcover, Nov 21 2012, from explicit formula *)
Formula
Recurrences: T(1, 0) = T(1, 1)=2; T(k, r) = 2*k*(2*k-1)/(k-r)^2 * T(k-1, r); T(k, r) = (k+1-r)^2/r^2 * T(k, r-1).
T(n, k) = binomial(2*n, n) * binomial(n, k)^2.
Sum_{k=0..n} T(n, k) = A002894(n).
From Bradley Klee, Aug 12 2018: (Start)
T(n,k) = (2*n)!/((n-k)!*k!)^2.
T(n,k) = C(2*n,2*k)*C(2*(n-k),n-k)*C(2*k,k).
Sum_{k=0..n} T(n,k) = Sum_{k=0..n} C(2*n,2*k)*C(2*(n-k),n-k)*C(2*k,k) = C(2*n,n)^2.
Sum_{k=0..n} T(n,k) = Sum_{k=0..n} (2n)!/(k!(n-k)!)^2 = C(2*n,n)^2.
(End)
Comments