cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069470 a(n) = Sum_{k>=1} floor(n/(k*(k+1)/2)).

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 9, 10, 11, 13, 15, 16, 19, 20, 21, 24, 25, 26, 29, 30, 32, 35, 36, 37, 40, 41, 42, 44, 46, 47, 52, 53, 54, 56, 57, 58, 62, 63, 64, 66, 68, 69, 73, 74, 75, 79, 80, 81, 84, 85, 87, 89, 90, 91, 94, 96, 98, 100, 101, 102, 107, 108, 109, 112, 113, 114, 118
Offset: 0

Views

Author

Henry Bottomley, Mar 25 2002

Keywords

Comments

The summation has floor(1/2 + sqrt(2*n)) = A002024(n) nonzero terms. - Enrique Pérez Herrero, Apr 05 2010

Examples

			a(11) = floor(11/1) + floor(11/3) + floor(11/6) + floor(11/10) + floor(11/15) + ... = 11 + 3 + 1 + 1 + 0 + ... = 16.
		

Crossrefs

Programs

  • Magma
    [(&+[Floor(n/(k*(k+1)/2)): k in [1..100]]): n in [0..30]]; // G. C. Greubel, May 23 2018
  • Mathematica
    A069470[n_]:=Sum[Floor[(2*n)/(k*(1 + k))], {k, 1, Floor[1/2 + Sqrt[2*n]]}] (* Enrique Pérez Herrero, Apr 05 2010 *)
  • PARI
    for(n=0, 30, print1(sum(k=1, 100, floor(n/(k*(k+1)/2))), ", ")) \\ G. C. Greubel, May 23 2018
    

Formula

a(n) = a(n-1) + A007862(n).
It appears that limit((sum(floor((1/2)*n/(k*(k+1))), k=1..n))/n, n=infinity) = 1/2. - Stephen Crowley, Aug 12 2009
From Enrique Pérez Herrero, Apr 05 2010: (Start)
a(n) <= floor((2*n^2)/(1 + n)) = A004275(n).
a(n) <= floor((2*n*floor((1 + 2*sqrt(2*n))/2))/(1+floor((1+2*sqrt(2*n))/2))). (End)
G.f.: (1/(1 - x)) * Sum_{k>=1} x^(k*(k+1)/2)/(1 - x^(k*(k+1)/2)). - Ilya Gutkovskiy, Jul 11 2019