cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069485 Greatest prime factor of prime(n+1)^2 + prime(n)^2.

Original entry on oeis.org

13, 17, 37, 17, 29, 229, 13, 89, 137, 53, 233, 61, 353, 2029, 193, 37, 277, 821, 953, 61, 89, 101, 1481, 1733, 53, 2081, 269, 2333, 29, 14449, 3329, 3593, 293, 1597, 22501, 73, 25609, 373, 28909, 6197, 32401, 389, 101, 2237, 7841, 42061, 29, 257, 281, 821
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 29 2002

Keywords

Comments

How small can members of this sequence be? For example, a(52837) = 97 since 650107^2 + 650099^2 = 2 * 5^4 * 29 * 37 * 73 * 89 * 97. - Charles R Greathouse IV, May 14 2014

Examples

			A069482(10) = A000040(11)^2 + A000040(10)^2 = 29^2 + 31^2 = 841 + 961 = 1802 = 2*17*53, therefore a(10) = 53.
		

Crossrefs

Cf. A069483.

Programs

  • Maple
    seq(max(map2(op,1,ifactors(ithprime(i+1)^2 + ithprime(i)^2)[2])), i=1..1000); # Robert Israel, May 18 2014
  • Mathematica
    Table[ FactorInteger[ Prime[n + 1]^2 + Prime[n]^2] [[ -1, 1]], {n, 1, 50} ]
    FactorInteger[#][[-1,1]]&/@Total/@Partition[Prime[Range[60]]^2,2,1] (* Harvey P. Dale, Jul 08 2019 *)
  • PARI
    gpf(n)=my(f=factor(n)[,1]); f[#f]
    a(n)=my(p=prime(n)); gpf(nextprime(p+1)^2 + p^2) \\ Charles R Greathouse IV, May 14 2014

Formula

a(n) = A006530(A069484(n)).

Extensions

Edited and extended by Robert G. Wilson v, Apr 18 2002