cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069490 Primes > 1000 in which every substring of lengths 2 and 3 are also prime.

Original entry on oeis.org

1373, 3137, 3797, 6131, 6173, 6197, 9719, 11311, 11317, 17971, 31379, 61379, 71971, 113131, 113173, 113797, 131311, 131317, 131797, 179719, 317971, 431311, 431797, 617971, 1131131, 1131379, 1311311, 1313797, 1317971, 3131137, 3131311
Offset: 1

Views

Author

Amarnath Murthy, Mar 30 2002

Keywords

Comments

For all terms: substrings of length 3 correspond to one of the first 21 terms of A069489. - Reinhard Zumkeller, Jun 08 2015

Examples

			11317 is a term as the substrings of length 2, i.e., 11, 13, 31, 17 and the three substrings of length 3, i.e., 113, 131 and 317 are all prime.
		

Crossrefs

Programs

  • Haskell
    import Data.Set (fromList, deleteFindMin, union)
    a069490 n = a069490_list !! (n-1)
    a069490_list = f $ fromList [1..9] where
       f s | m < 1000               = f s''
           | h m && a010051' m == 1 = m : f s''
           | otherwise              = f s''
           where s'' = union s' $ fromList $ map (+ (m * 10)) [1, 3, 7, 9]
                 (m, s') = deleteFindMin s
       h x = x < 100 && a010051' x == 1 ||
             a010051' (x `mod` 1000) == 1 &&
             a010051' (x `mod` 100) == 1 && h (x `div` 10)
    -- Reinhard Zumkeller, Jun 08 2015
  • Mathematica
    Do[ If[ Union[ PrimeQ[ Map[ FromDigits, Partition[ IntegerDigits[ Prime[n]], 2, 1]]]] == Union[ PrimeQ[ Map[ FromDigits, Partition[ IntegerDigits[ Prime[n]], 3, 1]]]] == {True}, Print[ Prime[n]]], {n, PrimePi[1000] + 1, 10^5}]
     Select[Prime[Range[169,226000]],AllTrue[FromDigits/@Flatten[Table[ Partition[ IntegerDigits[ #],k,1],{k,{2,3}}],1],PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 02 2021 *)

Extensions

Edited, corrected and extended by Robert G. Wilson v, Apr 12 2002