A069490 Primes > 1000 in which every substring of lengths 2 and 3 are also prime.
1373, 3137, 3797, 6131, 6173, 6197, 9719, 11311, 11317, 17971, 31379, 61379, 71971, 113131, 113173, 113797, 131311, 131317, 131797, 179719, 317971, 431311, 431797, 617971, 1131131, 1131379, 1311311, 1313797, 1317971, 3131137, 3131311
Offset: 1
Keywords
Examples
11317 is a term as the substrings of length 2, i.e., 11, 13, 31, 17 and the three substrings of length 3, i.e., 113, 131 and 317 are all prime.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..100
Programs
-
Haskell
import Data.Set (fromList, deleteFindMin, union) a069490 n = a069490_list !! (n-1) a069490_list = f $ fromList [1..9] where f s | m < 1000 = f s'' | h m && a010051' m == 1 = m : f s'' | otherwise = f s'' where s'' = union s' $ fromList $ map (+ (m * 10)) [1, 3, 7, 9] (m, s') = deleteFindMin s h x = x < 100 && a010051' x == 1 || a010051' (x `mod` 1000) == 1 && a010051' (x `mod` 100) == 1 && h (x `div` 10) -- Reinhard Zumkeller, Jun 08 2015
-
Mathematica
Do[ If[ Union[ PrimeQ[ Map[ FromDigits, Partition[ IntegerDigits[ Prime[n]], 2, 1]]]] == Union[ PrimeQ[ Map[ FromDigits, Partition[ IntegerDigits[ Prime[n]], 3, 1]]]] == {True}, Print[ Prime[n]]], {n, PrimePi[1000] + 1, 10^5}] Select[Prime[Range[169,226000]],AllTrue[FromDigits/@Flatten[Table[ Partition[ IntegerDigits[ #],k,1],{k,{2,3}}],1],PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 02 2021 *)
Extensions
Edited, corrected and extended by Robert G. Wilson v, Apr 12 2002
Comments