A069513 Characteristic function of the prime powers p^k, k >= 1.
0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0
Offset: 1
Links
- Daniel Forgues, Table of n, a(n) for n = 1..100000.
Crossrefs
Programs
-
Haskell
a069513 1 = 0 a069513 n = a010055 n -- Reinhard Zumkeller, Mar 19 2013
-
Maple
A069513 := proc(n) if n = 1 then 0 ; elif A001221(n) > 1 then 0; else 1 ; end if ; end proc: seq(A069513(n),n=1..80) ; # R. J. Mathar, Nov 02 2016
-
Mathematica
A069513[n_]:=Boole[PrimeNu[n]==1]; A069513/@Range[20] (* Enrique Pérez Herrero, May 30 2011 *)
-
PARI
for(n=1,120,print1(omega(n)==1,","))
-
Python
from sympy import primefactors def A069513(n): return int(len(primefactors(n)) == 1) # Chai Wah Wu, Mar 31 2023
Formula
If n >= 2, a(n) = A010055(n).
a(n) = Sum_{d|n} bigomega(d)*mu(n/d); equivalently, Sum_{d|n} a(d) = bigomega(n); equivalently, Möbius transform of bigomega(n).
Dirichlet g.f.: ppzeta(s). Here ppzeta(s) = Sum_{p prime} Sum_{k>=1} 1/(p^k)^s. Note that ppzeta(s) = Sum_{p prime} 1/(p^s - 1) = Sum_{k>=1} primezeta(k*s). - Franklin T. Adams-Watters, Sep 11 2005
a(n) = floor(1/A001221(n)), for n > 1. - Enrique Pérez Herrero, Jun 01 2011
a(n) = - Sum_{d|n} mu(d)*bigomega(d), where bigomega = A001222. - Ridouane Oudra, Oct 29 2024
a(n) = - Sum_{d|n} mu(d)*omega(d), where omega = A001221. - Ridouane Oudra, Jul 30 2025
Extensions
Moved original definition to formula line. Used comment (that I previously added) as definition. - Daniel Forgues, Mar 08 2009
Edited by Franklin T. Adams-Watters, Nov 02 2009
Comments