A069525 Smallest multiple of n with digit sum = 6, or 0 if no such number exists, e.g. a(9k)= 0.
6, 6, 6, 24, 15, 6, 42, 24, 0, 60, 33, 24, 312, 42, 15, 240, 51, 0, 114, 60, 42, 132, 1104, 24, 150, 312, 0, 420, 1131, 60, 1023, 2112, 33, 204, 105, 0, 222, 114, 312, 240, 123, 42, 1032, 132, 0, 1104, 141, 240, 12201, 150, 51, 312, 1113, 0, 330, 4200, 114, 4002, 2301
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..2500
Programs
-
Maple
N:= 1000: # to get a(1)..a(N) nextL:= proc(L) local m,q,Lp; for m from 1 do if L[m] > 0 then if m = LinearAlgebra:-Dimension(L) then return <5,0$(m-1),1> else Lp:= L; Lp[1]:= L[m]-1; Lp[2..m]:= 0; Lp[m+1]:= L[m+1]+1; return Lp; fi fi od; end proc: nogo:= proc(n) local m,a2,a5,S,S2,S3,i,j; a2:= padic:-ordp(n,2); a5:= padic:-ordp(n,5); m:= numtheory:-order(10,n/(2^a2*5^a5))+max(a2,a5); S:= {seq(10^i mod n, i=0..m-1)}; S2:= {seq(seq(S[i]+S[j] mod n,j=1..i),i=1..nops(S))}; S3:= {seq(seq(S[i]+ S2[j] mod n, j=1..nops(S2)),i=1..nops(S))}; evalb(S3 intersect map(t -> -t mod n, S3) = {}); end proc: Agenda:= remove(t -> (t mod 9=0 or t mod 239=0 or t mod 271=0 or t mod 803=0, {$1..N}): L:= <6>: x:= 6: A:= Vector(N): while Agenda <> {} and x < 10^20 do x:= add(L[i]*10^(i-1),i=1..LinearAlgebra:-Dimension(L)); found,Agenda:= selectremove(t -> x mod t = 0, Agenda); if found <> {} then A[convert(found,list)]:= x; fi; L:= nextL(L); od: Agenda:= remove(nogo,Agenda); if Agenda <> {} then printf("Values not found for %a\n",Agenda) fi; convert(A,list); # Robert Israel, Sep 04 2019
-
Mathematica
Array[If[AnyTrue[Mod[#, {9, 239, 271, 803}], # == 0 &], 0, Block[{k = 1}, While[Total@ IntegerDigits[k #] != 6, k++]; k #]] &, 59] (* Michael De Vlieger, Sep 04 2019 *)
Formula
a(n) = n*A088395(n). - R. J. Mathar, Aug 06 2019
Extensions
More terms from Ray Chandler, Jul 30 2003
Comments