cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A088410 a(n) = A069543(n)/8.

Original entry on oeis.org

1, 10, 19, 28, 55, 64, 100, 127, 145, 154, 163, 190, 253, 280, 289, 325, 379, 388, 415, 505, 514, 550, 640, 775, 1000, 1252, 1270, 1279, 1288, 1315, 1378, 1405, 1414, 1450, 1504, 1513, 1540, 1630, 1639, 1675, 1765, 1900, 2125, 2503, 2530, 2539, 2575, 2629
Offset: 1

Views

Author

Ray Chandler, Sep 29 2003

Keywords

Crossrefs

Cf. A069543.

A245062 Array read by upward antidiagonals: Niven (or Harshad) numbers arranged in rows by their digit sums.

Original entry on oeis.org

1, 2, 10, 3, 20, 100, 4, 12, 110, 1000, 5, 40, 21, 200, 10000, 6, 50, 112, 30, 1010, 100000, 7, 24, 140, 220, 102, 1100, 1000000, 8, 70, 42, 230, 400, 111, 2000, 10000000, 9, 80, 133, 60, 320, 1012, 120, 10010, 100000000, 190, 18, 152, 322, 114, 410, 1120, 201, 10100, 1000000000
Offset: 1

Views

Author

L. Edson Jeffery, Jul 10 2014

Keywords

Comments

The n-th row contains in increasing order all multiples of n with digit sum n.
See A005349 for definitions and references.

Examples

			Array begins as:
  1  10  100  1000  10000  100000  1000000  10000000  100000000  1000000000
  2  20  110   200   1010    1100     2000     10010      10100       11000
  3  12   21    30    102     111      120       201        210         300
  4  40  112   220    400    1012     1120      1300       2020        2200
  5  50  140   230    320     410      500      1040       1130        1220
  6  24   42    60    114     132      150       204        222         240
  7  70  133   322    511     700     1015      1141       1204        1330
  8  80  152   224    440     512      800      1016       1160        1232
  9  18   27    36     45      54       63        72         81          90
190 280  370   460    550     640      730       820        910        1090
		

Crossrefs

Cf. A002998 (column 1), A245065 (column 2).
Cf. A011557 (row 1), A069537 (row 2), A052217 (row 3), A063997 (row 4), A069540 (row 5), A062768 (row 6), A063416 (row 7), A069543 (row 8), A052223 (row 9).
Cf. A082260 (main diagonal).
Cf. A007953, A005349 (Niven or Harshad numbers).
Cf. A082259.

A279769 Numbers n such that the sum of digits of 9n is 18.

Original entry on oeis.org

11, 21, 22, 31, 32, 33, 41, 42, 43, 44, 51, 52, 53, 54, 55, 61, 62, 63, 64, 65, 66, 71, 72, 73, 74, 75, 76, 77, 81, 82, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 121, 122, 131, 132, 133, 141
Offset: 1

Views

Author

M. F. Hasler, Dec 18 2016

Keywords

Comments

Differs from A084854 from a(55) = 110 on.
Numbers n such that A008591(n) is a term of A235228. - Felix Fröhlich, Dec 18 2016
The digital sum of 9n is always a multiple of 9, and never zero. For most numbers < 100, the digital sum is equal to 9, but for example in the range [91..110] all numbers except 100 have their digital sum equal to 18. The b-file / graph gives a hint on the "asymptotic" distribution / density of this set. After a "flat" range like that at [91..110] there comes a record gap. Sizes [and upper ends] of record gaps are: 10 [a(2) = 21], 11 [a(56) = 121, a(119) = 231, a(188) = 341, ..., a(553) = 891, a(616) = 1001], 21 [a(671) = 1121], 31 [a(1331) = 2231], ..., 91 [a(4339) = 8891], 101 [a(4621) = 10001], 121 [a(4841) = 11121], 231 [a(9176) = 22231], ..., 891 [a(24217) = 88891], 1001 [a(25213) = 100001], 1121 [a(25928) = 111121], 2231 [a(47510) = 222231], ..., 8891 [a(108577) = 888891], 10001 [a(111574) = 1000001], 11121 [a(113576) = 1111121], 22231 [a(202511) = 2222231], ..., 88891 [a(416215) = 8888891], ... - M. F. Hasler, Dec 22 2016

Crossrefs

Cf. A007953 (digital sum), A008591, A084854.
Cf. A279772 (sumdigits(2n) = 4), A279773 (sumdigits(3n) = 6), A279774 (sumdigits(4n) = 8), A279775 (sumdigits(5n) = 10), A279776 (sumdigits(6n) = 12), A279770 (sumdigits(7n) = 14), A279768 (sumdigits(8n) = 16), A279769 (sumdigits(9n) = 18), A279777 (sumdigits(9n) = 27).
Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Cf. A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).

Programs

  • Mathematica
    Select[Range@ 141, Total@ IntegerDigits[9 #] == 18 &]
  • PARI
    is(n) = sumdigits(9*n)==18 \\ Felix Fröhlich, Dec 18 2016

Formula

a(n) = A235228(n)/9.

A279777 Numbers k such that the sum of digits of 9k is 27.

Original entry on oeis.org

111, 211, 221, 222, 311, 321, 322, 331, 332, 333, 411, 421, 422, 431, 432, 433, 441, 442, 443, 444, 511, 521, 522, 531, 532, 533, 541, 542, 543, 544, 551, 552, 553, 554, 555, 611, 621, 622, 631, 632, 633, 641, 642, 643, 644, 651, 652, 653, 654, 655, 661
Offset: 1

Views

Author

M. F. Hasler, Dec 23 2016

Keywords

Comments

The digital sum of 9k is always a multiple of 9. For most numbers below 100 it is actually equal to 9. Numbers such that the digital sum of 9k is 18 are listed in A279769. Only every third term of the present sequence is divisible by 3.
The sequence of record gaps [and upper end of the gap] is: 100 [a(2) = 211], 101 [a(221) = 1211], 111 [a(4841) = 11211], 111 [a(10121) = 22311], 111 [a(15752) = 33411], ..., 111 [a(45133) = 88911], 111 [a(50413) = 100011], 211 [a(55253) = 111211], 311 [a(110000) = 222311], ..., 911 [a(380557) = 888911], 1011 [a(411049) = 1000011], 1211 [a(436976) = 1111211], 2311 [a(840281) = 2222311], ..., 8911 [a(2451241) = 8888911], ...

Crossrefs

Cf. A008591, A084854, A003991, A004247, A279769 (sumdigits(9n) = 18).
Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).
Cf. A007953 (digital sum), A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Cf. A082259.

Programs

  • Mathematica
    Select[Range@ 661, Total@ IntegerDigits[9 #] == 27 &] (* Michael De Vlieger, Dec 23 2016 *)
  • PARI
    is(n)=sumdigits(9*n)==27

A279768 Numbers n such that the sum of digits of 8n equals 16.

Original entry on oeis.org

11, 47, 56, 74, 83, 92, 101, 110, 119, 137, 146, 173, 182, 191, 209, 218, 227, 245, 272, 281, 299, 308, 317, 326, 335, 344, 353, 398, 407, 416, 434, 443, 452, 470, 479, 488, 506, 524, 533, 542, 551, 560, 569, 578, 605, 614, 632, 641, 659, 668, 677, 695
Offset: 1

Views

Author

M. F. Hasler, Dec 23 2016

Keywords

Comments

Inspired by A088410 = A069543/8 and A279769 (the analog for 9).

Crossrefs

Cf. A007953 (digital sum), A279772 (sumdigits(2n) = 4), A279773 (sumdigits(3n) = 6), A279774 (sumdigits(4n) = 8), A279775 (sumdigits(5n) = 10), A279776 (sumdigits(6n) = 12), A279770 (sumdigits(7n) = 14), A279768 (sumdigits(8n) = 16), A279769 (sumdigits(9n) = 18), A279777 (sumdigits(9n) = 27).
Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Cf. A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).

Programs

  • Mathematica
    Select[Range@ 700, Total@ IntegerDigits[8 #] == 16 &] (* Michael De Vlieger, Dec 23 2016 *)
  • PARI
    is(n)=sumdigits(8*n)==16

A279775 Numbers k such that the sum of digits of 5k equals 10.

Original entry on oeis.org

11, 29, 38, 47, 56, 65, 74, 83, 92, 101, 110, 128, 146, 164, 182, 209, 218, 227, 236, 245, 254, 263, 272, 281, 290, 308, 326, 344, 362, 380, 407, 416, 425, 434, 443, 452, 461, 470, 488, 506, 524, 542, 560, 605, 614, 623, 632, 641, 650, 668, 686, 704, 722, 740, 803, 812, 821, 830, 848, 866, 884, 902, 920
Offset: 1

Views

Author

M. F. Hasler, Dec 23 2016

Keywords

Comments

Inspired by A088407 = A069540/5 and A279769 (the analog for 9).

Crossrefs

Cf. A007953 (digital sum), A279772 (sumdigits(2n) = 4), A279773 (sumdigits(3n) = 6), A279774 (sumdigits(4n) = 8), A279776 (sumdigits(6n) = 12), A279770 (sumdigits(7n) = 14), A279768 (sumdigits(8n) = 16), A279769 (sumdigits(9n) = 18), A279777 (sumdigits(9n) = 27).
Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Cf. A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).

Programs

  • Mathematica
    Select[Range@ 920, Total@ IntegerDigits[5 #] == 10 &] (* Michael De Vlieger, Dec 23 2016 *)
  • PARI
    select( is(n)=sumdigits(5*n)==10, [0..999])
    
  • Python
    def ok(n): return sum(map(int, str(5*n))) == 10
    print([k for k in range(921) if ok(k)]) # Michael S. Branicky, Nov 29 2021

A279770 Numbers n such that the sum of digits of 7n equals 14.

Original entry on oeis.org

11, 38, 47, 56, 65, 74, 83, 92, 101, 110, 119, 155, 164, 182, 191, 209, 218, 236, 245, 263, 272, 299, 308, 317, 326, 335, 344, 353, 362, 380, 389, 416, 434, 452, 461, 470, 479, 488, 506, 515, 533, 560, 578, 587, 596, 605, 623, 632, 650, 659, 686, 722, 731
Offset: 1

Views

Author

M. F. Hasler, Dec 23 2016

Keywords

Comments

Inspired by A088409 = A063416/7 and A279769 (the analog for 9).

Crossrefs

Cf. A007953 (digital sum), A279772 (sumdigits(2n) = 4), A279773 (sumdigits(3n) = 6), A279774 (sumdigits(4n) = 8), A279775 (sumdigits(5n) = 10), A279776 (sumdigits(6n) = 12), A279768 (sumdigits(8n) = 16), A279769 (sumdigits(9n) = 18), A279777 (sumdigits(9n) = 27).
Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Cf. A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).

Programs

  • Mathematica
    Select[Range@ 731, Total@ IntegerDigits[7 #] == 14 &] (* Michael De Vlieger, Dec 23 2016 *)
  • PARI
    is(n)=sumdigits(7*n)==14

A279772 Numbers n such that the sum of digits of 2n equals 4.

Original entry on oeis.org

2, 11, 20, 56, 65, 101, 110, 155, 200, 506, 515, 551, 560, 605, 650, 1001, 1010, 1055, 1100, 1505, 1550, 2000, 5006, 5015, 5051, 5060, 5105, 5150, 5501, 5510, 5555, 5600, 6005, 6050, 6500, 10001, 10010, 10055, 10100, 10505, 10550, 11000, 15005, 15050, 15500
Offset: 1

Views

Author

M. F. Hasler, Dec 23 2016

Keywords

Comments

Inspired by A088404 = A069537/2 and A279769 (the analog for 9).

Crossrefs

Cf. A007953 (digital sum), A052216 (sumdigits(n) = 2), A279773 (sumdigits(3n) = 6), A279774 (sumdigits(4n) = 8), A279775 (sumdigits(5n) = 10), A279776 (sumdigits(6n) = 12), A279770 (sumdigits(7n) = 14), A279768 (sumdigits(8n) = 16), A279769 (sumdigits(9n) = 18), A279777 (sumdigits(9n) = 27).
Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Cf. A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).

Programs

  • Mathematica
    Select[Range@ 15500, Total@ IntegerDigits[2 #] == 4 &] (* Michael De Vlieger, Dec 23 2016 *)
  • PARI
    select( is(n)=sumdigits(2*n)==4, [1..9999])

A279773 Numbers n such that the sum of digits of 3n equals 6.

Original entry on oeis.org

2, 5, 8, 11, 14, 17, 20, 35, 38, 41, 44, 47, 50, 68, 71, 74, 77, 80, 101, 104, 107, 110, 134, 137, 140, 167, 170, 200, 335, 338, 341, 344, 347, 350, 368, 371, 374, 377, 380, 401, 404, 407, 410, 434, 437, 440, 467, 470, 500, 668, 671, 674, 677, 680, 701
Offset: 1

Views

Author

M. F. Hasler, Dec 23 2016

Keywords

Comments

Inspired by A088405 = A052217/3 and A279769 (the analog for 9).

Crossrefs

Cf. A007953 (digital sum), A279772 (sumdigits(2n) = 4), A279774 (sumdigits(4n) = 8), A279775 (sumdigits(5n) = 10), A279776 (sumdigits(6n) = 12), A279770 (sumdigits(7n) = 14), A279768 (sumdigits(8n) = 16), A279769 (sumdigits(9n) = 18), A279777 (sumdigits(9n) = 27).
Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Cf. A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).

Programs

  • Mathematica
    Select[Range@ 720, Total@ IntegerDigits[3 #] == 6 &] (* Michael De Vlieger, Dec 23 2016 *)
  • PARI
    select( is(n)=sumdigits(3*n)==6, [1..999])

A279774 Numbers n such that the sum of digits of 4n equals 8.

Original entry on oeis.org

2, 11, 20, 29, 38, 56, 65, 83, 101, 110, 128, 155, 200, 254, 263, 281, 290, 308, 326, 335, 353, 380, 425, 506, 515, 533, 551, 560, 578, 605, 650, 758, 776, 785, 803, 830, 875, 1001, 1010, 1028, 1055, 1100, 1253, 1280, 1325, 1505, 1550, 1775
Offset: 1

Views

Author

M. F. Hasler, Dec 23 2016

Keywords

Comments

Inspired by A088406 = A063997/4 and A279769 (the analog for 9).

Crossrefs

Cf. A007953 (digital sum), A279772 (sumdigits(2n) = 4), A279773 (sumdigits(3n) = 6), A279775 (sumdigits(5n) = 10), A279776 (sumdigits(6n) = 12), A279770 (sumdigits(7n) = 14), A279768 (sumdigits(8n) = 16), A279769 (sumdigits(9n) = 18), A279777 (sumdigits(9n) = 27).
Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Cf. A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).

Programs

  • Mathematica
    Select[Range@ 2000, Total@ IntegerDigits[4 #] == 8 &] (* Michael De Vlieger, Dec 23 2016 *)
  • PARI
    select( is(n)=sumdigits(4*n)==8, [1..1999])
Showing 1-10 of 14 results. Next