A069544 Continued fraction for Feigenbaum's constant - 4 = 0.6692...
1, 2, 43, 2, 163, 2, 3, 1, 1, 2, 5, 1, 2, 3, 80, 2, 5, 2, 1, 1, 1, 33, 1, 1, 53, 1, 1, 1, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 239, 1, 3, 31, 1, 1, 11, 1, 13, 123, 2, 2, 2, 2, 13, 15, 1, 2, 3, 3, 1, 3, 1, 1, 6, 1, 3, 1, 1, 13, 8, 1, 7, 1, 2, 1, 8, 7, 1, 17, 1, 6, 1, 1, 3, 1, 1, 13, 1, 1, 4, 2, 9, 124
Offset: 0
Links
- Robert G. Wilson v, Table of n, a(n) for n = 0..952
- David Broadhurst, 1019 decimal digits of Feigenbaum's delta. Correspondence to Simon Plouffe and others, 22-Mar-1999.
Programs
-
PARI
default(realprecision,999);{/*paste here delta=... from the Broadhurst link*/};contfrac(delta)[^1] \\ M. F. Hasler, Apr 30 2018
Formula
delta - 4 = 1/( 1 + 1/( 2 + 1/( 43 + 1/( 2 + 1/( 163 + ... ))))) = 0.66920160910... - M. F. Hasler, Apr 30 2018
Comments