A069261 Denominators of the Egyptian fraction for the fractional part of Feigenbaum's constant, 4.6692...
2, 6, 395, 303319, 131209492876, 45596605913248081159007, 34243827483200809826686815883136413405197711755, 111445370519459209554489628949586784217535791333333948765270067675689059510906528783799426730444
Offset: 1
Links
- Kevin Ryde, Table of n, a(n) for n = 1..10
Programs
-
PARI
t=delta-4/*from A006890, or use: t=contfracpnqn(A069544); t[1,1]/t[2,1]*/; for(i=1,8,print1(1\t+1",");t-=1/(1\t+1)) \\ Requires delta to 93 decimals or A069544 to 90 terms (up to [...,1,1,4]) to get a(7) correctly, 180 terms for a(8). - M. F. Hasler, Apr 30 2018
Formula
a(n) = ceiling(1/(delta - 4 - Sum_{0 < i < n} 1/a(i))) is the smallest integer such that 4 + Sum_{i=1..n} 1/a(i) < delta = 4.6620... - M. F. Hasler, Apr 30 2018
Extensions
Edited by M. F. Hasler, Apr 30 2018
Comments