cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A069261 Denominators of the Egyptian fraction for the fractional part of Feigenbaum's constant, 4.6692...

Original entry on oeis.org

2, 6, 395, 303319, 131209492876, 45596605913248081159007, 34243827483200809826686815883136413405197711755, 111445370519459209554489628949586784217535791333333948765270067675689059510906528783799426730444
Offset: 1

Views

Author

Christopher Lund (clund(AT)san.rr.com), Apr 14 2002

Keywords

Comments

The next term in the series, a(9), is ~ 10^190.
The sequence gives the denominators for the fractional part of delta only. One could prefix four 1's in order to get (sum of reciprocals) = delta.

Crossrefs

Cf. A006890 (Feigenbaum's constant), A069544 (continued fraction).

Programs

  • PARI
    t=delta-4/*from A006890, or use: t=contfracpnqn(A069544); t[1,1]/t[2,1]*/; for(i=1,8,print1(1\t+1",");t-=1/(1\t+1)) \\ Requires delta to 93 decimals or A069544 to 90 terms (up to [...,1,1,4]) to get a(7) correctly, 180 terms for a(8). - M. F. Hasler, Apr 30 2018

Formula

a(n) = ceiling(1/(delta - 4 - Sum_{0 < i < n} 1/a(i))) is the smallest integer such that 4 + Sum_{i=1..n} 1/a(i) < delta = 4.6620... - M. F. Hasler, Apr 30 2018

Extensions

Edited by M. F. Hasler, Apr 30 2018

A006890 Decimal expansion of Feigenbaum bifurcation velocity.

Original entry on oeis.org

4, 6, 6, 9, 2, 0, 1, 6, 0, 9, 1, 0, 2, 9, 9, 0, 6, 7, 1, 8, 5, 3, 2, 0, 3, 8, 2, 0, 4, 6, 6, 2, 0, 1, 6, 1, 7, 2, 5, 8, 1, 8, 5, 5, 7, 7, 4, 7, 5, 7, 6, 8, 6, 3, 2, 7, 4, 5, 6, 5, 1, 3, 4, 3, 0, 0, 4, 1, 3, 4, 3, 3, 0, 2, 1, 1, 3, 1, 4, 7, 3, 7, 1, 3, 8, 6, 8, 9, 7, 4, 4, 0, 2, 3, 9, 4, 8, 0, 1, 3, 8, 1, 7, 1, 6
Offset: 1

Views

Author

Keywords

Comments

"... These are related to properties of dynamical systems with 'period-doubling' oscillations. The ratio of successive differences between period-doubling bifurcation parameters approaches the number 4.669... Period doubling has been discovered in many physical systems before they enter the chaotic regime. Feigenbaum numbers have not been proved to be transcendental but are generally believed to be. ..." [Pickover]
The Feigenbaum delta constant is the convergence ratio {g(k)-g(k-1)}/{g(k+1)-g(k)} of successive period-doubling thresholds g(k) in the continuous map x(n+1)=f(x(n),g) of an interval onto itself. - Lekraj Beedassy, Jan 07 2005
The above statement is only valid for functions f satisfying some properties, e.g., having a single locally quadratic maximum. See, e.g., the MathWorld link for more details. - M. F. Hasler, May 01 2018
Named after the American mathematical physicist Mitchell Jay Feigenbaum (1944-2019). - Amiram Eldar, Jun 16 2021

Examples

			4.669201609102990671853203820466201617258185577475768632745651343004134...
		

References

  • Michael F. Barnsley, Fractals Everywhere, New Edition, Prof. of Math., Australian National University, Dover Publications, Inc., Mineola, NY, 2012, page 314.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 24, 208.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, pp. 65-76
  • Clifford A. Pickover, (1993) 'The fifteen most famous transcendental numbers.' "Journal of Recreational Mathematics," 25(1):12.
  • Clifford A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Chapter 44, 'The 15 Most Famous Transcendental Numbers,' Oxford University Press, Oxford, England, 2000, pages 103 - 106.
  • Clifford A. Pickover, The Math Book, Sterling, NY, 2009; see p. 462.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Ian Stewart, Nature's Numbers, Chapter 8, Do Dice Play God?, Weidenfeld & Nicolson, 1995.

Crossrefs

Cf. A159766 and A069544 (continued fraction), A069261 (Egyptian fraction), A108952 (1/delta), A102817 (Gamma(delta^2)).
Cf. A006891 (Feigenbaum reduction parameter), A218453.

Extensions

Additional comments from Robert G. Wilson v, Dec 29 2000

A159766 Continued fraction expansion of the Feigenbaum constant A006890 = 4.66920160910...

Original entry on oeis.org

4, 1, 2, 43, 2, 163, 2, 3, 1, 1, 2, 5, 1, 2, 3, 80, 2, 5, 2, 1, 1, 1, 33, 1, 1, 53, 1, 1, 1, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 239, 1, 3, 31, 1, 1, 11, 1, 13, 123, 2, 2, 2, 2, 13, 15, 1, 2, 3, 3, 1, 3, 1, 1, 6, 1, 3, 1, 1, 13, 8, 1, 7, 1, 2, 1, 8, 7, 1, 17, 1, 6, 1, 1, 3, 1, 1, 13, 1, 1, 4, 2, 9, 124, 1, 1, 3
Offset: 0

Views

Author

Harry J. Smith, Apr 21 2009

Keywords

Comments

Feigenbaum bifurcation velocity delta. See A006890 for further information.
Apart from the first term, the same as A069544. - R. J. Mathar, Apr 28 2009

Examples

			4.66920160910299067185320382... = 4 + 1/(1 + 1/(2 + 1/(43 + 1/(2 + ...))))
		

Crossrefs

Cf. A006890 (decimal expansion of the constant), A069544 (continued fraction of the fractional part), A069261 (Egyptian fraction).

Programs

  • Mathematica
    fbvd = (* copy value from the link in A006890 or immediately above *); ContinuedFraction@ fbvd (* Robert G. Wilson v, Apr 27 2009 *)
  • PARI
    { default(realprecision,1019); delta=4.\
    6692016091029906718532038204662016172581855774757686327456513430\
    0413433021131473713868974402394801381716598485518981513440862714\
    2027932522312442988890890859944935463236713411532481714219947455\
    6443658237932020095610583305754586176522220703854106467494942849\
    8145339172620056875566595233987560382563722564800409510712838906\
    1184470277585428541980111344017500242858538249833571552205223608\
    7250291678860362674527213399057131606875345083433934446103706309\
    4520191158769724322735898389037949462572512890979489867683346116\
    2688911656312347446057517953912204556247280709520219819909455858\
    1946136877445617396074115614074243754435499204869180982648652368\
    4387027996490173977934251347238087371362116018601281861020563818\
    1835409759847796417390032893617143215987824078977661439139576403\
    7760537119096932066998361984288981837003229412030210655743295550\
    3888458497370347275321219257069584140746618419819610061296401614\
    8771294441590140546794180019813325337859249336588307045999993837\
    5411726563553016862529032210862320550634510679399023341675; A159766=contfrac(delta); for (n=1, 967, write("b159766.txt", n-1, " ", A159766[n])); } \\ Harry J. Smith, May 15 2009
    
  • PARI
    A159766=contfrac(delta) \\ M. F. Hasler, Apr 30 2018

Extensions

Old PARI program deleted by Harry J. Smith, May 19 2009
Showing 1-3 of 3 results.