cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A257809 Lexicographically largest strictly increasing sequence of primes for which the continued square root map produces Feigenbaum's constant delta = 4.6692016... (A006890).

Original entry on oeis.org

13, 67, 97, 139, 293, 661, 1163, 1657, 2039, 3203, 3469, 5171, 6361, 6661, 7393, 7901, 8969, 9103, 9137, 11971, 12301, 13487, 14083, 14699, 15473, 19141, 21247, 28099, 31039, 35423, 39047, 49223, 58427, 61493, 62171, 67699, 71971, 75869, 78857, 81533, 88007, 93199
Offset: 1

Views

Author

Chai Wah Wu, May 10 2015

Keywords

Comments

The continued square root map takes a finite or infinite sequence (x, y, z, ...) to the number CSR(x, y, z,...) = sqrt(x + sqrt(y + sqrt(z + ...))). It is well defined if the logarithm of the terms is O(2^n).
The terms are defined to be the largest possible choice such that the sequence can remain strictly increasing without the CSR growing beyond delta = 4.66920...

Examples

			From _M. F. Hasler_, May 03 2018: (Start)
We look for a strictly increasing sequence of primes (p,q,r,...) such that CSR(p,q,r,...) = sqrt(p + sqrt(q + sqrt(r + ...))) = delta = 4.66920...
The first term must be less than delta^2 ~ 21.8, but p = 19 and also p = 17 are excluded, since CSR(17,19,23,...) > 4.67. It appears that p = 13 does not lead to a contradiction, so this is the largest possible choice for p, whence a(1) = 13.
The second term could be chosen to be q = 17, provided that subsequent terms are large enough to ensure CSR(p, q, r,...) = delta, which is always possible. But one can verify that any q between 19 and 67 is also possible without contradiction. If we try q = 71, then we find that CSR(13, 71, 73, ...) > 4.68. So a(2) = 67, etc. (End)
		

Crossrefs

Programs

  • PARI
    (CSR(v,s)=forstep(i=#v,1,-1,s=sqrt(v[i]+s));s); a=[13]; for(n=1,50, print1(a[#a]","); for(i=primepi(a[#a])+1,oo, CSR(concat(a,vector(9,j,prime(i+j))))>=delta&& (a=concat(a,prime(i)))&& break)) \\  For delta, see A006890. - M. F. Hasler, May 03 2018

Extensions

Edited by M. F. Hasler, May 02 2018

A159766 Continued fraction expansion of the Feigenbaum constant A006890 = 4.66920160910...

Original entry on oeis.org

4, 1, 2, 43, 2, 163, 2, 3, 1, 1, 2, 5, 1, 2, 3, 80, 2, 5, 2, 1, 1, 1, 33, 1, 1, 53, 1, 1, 1, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 239, 1, 3, 31, 1, 1, 11, 1, 13, 123, 2, 2, 2, 2, 13, 15, 1, 2, 3, 3, 1, 3, 1, 1, 6, 1, 3, 1, 1, 13, 8, 1, 7, 1, 2, 1, 8, 7, 1, 17, 1, 6, 1, 1, 3, 1, 1, 13, 1, 1, 4, 2, 9, 124, 1, 1, 3
Offset: 0

Views

Author

Harry J. Smith, Apr 21 2009

Keywords

Comments

Feigenbaum bifurcation velocity delta. See A006890 for further information.
Apart from the first term, the same as A069544. - R. J. Mathar, Apr 28 2009

Examples

			4.66920160910299067185320382... = 4 + 1/(1 + 1/(2 + 1/(43 + 1/(2 + ...))))
		

Crossrefs

Cf. A006890 (decimal expansion of the constant), A069544 (continued fraction of the fractional part), A069261 (Egyptian fraction).

Programs

  • Mathematica
    fbvd = (* copy value from the link in A006890 or immediately above *); ContinuedFraction@ fbvd (* Robert G. Wilson v, Apr 27 2009 *)
  • PARI
    { default(realprecision,1019); delta=4.\
    6692016091029906718532038204662016172581855774757686327456513430\
    0413433021131473713868974402394801381716598485518981513440862714\
    2027932522312442988890890859944935463236713411532481714219947455\
    6443658237932020095610583305754586176522220703854106467494942849\
    8145339172620056875566595233987560382563722564800409510712838906\
    1184470277585428541980111344017500242858538249833571552205223608\
    7250291678860362674527213399057131606875345083433934446103706309\
    4520191158769724322735898389037949462572512890979489867683346116\
    2688911656312347446057517953912204556247280709520219819909455858\
    1946136877445617396074115614074243754435499204869180982648652368\
    4387027996490173977934251347238087371362116018601281861020563818\
    1835409759847796417390032893617143215987824078977661439139576403\
    7760537119096932066998361984288981837003229412030210655743295550\
    3888458497370347275321219257069584140746618419819610061296401614\
    8771294441590140546794180019813325337859249336588307045999993837\
    5411726563553016862529032210862320550634510679399023341675; A159766=contfrac(delta); for (n=1, 967, write("b159766.txt", n-1, " ", A159766[n])); } \\ Harry J. Smith, May 15 2009
    
  • PARI
    A159766=contfrac(delta) \\ M. F. Hasler, Apr 30 2018

Extensions

Old PARI program deleted by Harry J. Smith, May 19 2009

A102817 Decimal expansion of Gamma(delta)^2 where delta is the Feigenbaum bifurcation velocity constant (A006890).

Original entry on oeis.org

2, 1, 7, 9, 9, 9, 9, 7, 6, 4, 4, 9, 9, 9, 8, 8, 1, 4, 6, 8, 6, 2, 8, 8, 1, 3, 9, 5, 7, 7, 9, 3, 6, 0, 9, 8, 9, 0, 7, 2, 6, 7, 9, 7, 8, 9, 0, 9, 7, 3, 0, 0, 5, 6, 5, 4, 8, 3, 2, 8, 8, 5, 2, 1, 2, 2, 4, 0, 4, 2, 3, 7, 7, 2, 0, 9, 6, 4, 2, 6, 1, 4, 9, 8, 3, 9, 2, 3, 1, 1, 2, 6, 8, 1, 5, 0, 7, 1, 6, 5, 3, 3, 0, 8, 6
Offset: 3

Views

Author

Gerald McGarvey, Feb 26 2005

Keywords

Comments

Let x be this constant, then Integral_{t=1..x} sin(t)/sqrt(t) dt = 0.655555692248871113068...
delta^2 = 21.8014436664499573..., (delta/Gamma(delta))^2 = 0.10000663312663433933000349...
If s is solution of Gamma(s) - sqrt(218) = 0 then 1/((s - delta)*Gamma(delta)^6) = 2.5555951358396... whereas a^(Pi/4) = 2.055596478435... where a is Feigenbaum alpha constant (A006891), the difference = 0.4999986574... ~ 1/(2 + 10^-5.27)
10*cos(Gamma(delta)^2) + Pi = -0.199999019922688714710053...

Examples

			217.99997644999881468628813957793609890726797890973...
		

Crossrefs

Programs

  • Mathematica
    Set delta then RealDigits[Gamma[delta]^2, 10, 110][[1]]
  • PARI
    acos(Pi/10+.0199999019922688714710053)+69*Pi \\ Yields ~ 30 digits. Using (2e5-1)/(1e7-1) yields ~ 15 digits. For a better value use, e.g., delta from the Broadhurst link. - M. F. Hasler, Apr 30 2018

A104123 Decimal expansion of the constant c = sqrt((137 - 1/(57+sqrt(Pi)/10))/(2*Pi)), an approximation to the Feigenbaum bifurcation velocity constant delta (A006890).

Original entry on oeis.org

4, 6, 6, 9, 2, 0, 1, 6, 0, 9, 1, 8, 3, 4, 9, 2, 4, 5, 1, 4, 5, 0, 6, 6, 1, 8, 9, 4, 0, 5, 2, 3, 3, 0, 6, 1, 9, 5, 1, 6, 9, 6, 6, 1, 0, 5, 5, 5, 8, 6, 9, 4, 3, 6, 6, 2, 9, 7, 8, 2, 7, 2, 5, 3, 9, 7, 8, 4, 4, 7, 0, 7, 2, 7, 7, 6, 2, 6, 6, 7, 4, 8, 0, 6, 6, 9, 9, 8, 4, 8, 0, 4, 1, 8, 4, 4, 3, 2, 0, 1, 4, 8, 7, 4, 0
Offset: 1

Views

Author

Gerald McGarvey, Mar 06 2005

Keywords

Comments

c - delta = 0.000000000080501779597..., Gamma(delta) - InverseGamma(1/(c-delta)) = 0.50050037514..., log(log(1/(c-d))) - Pi = 0.00440025013324...

Examples

			4.669201609183492451450661894052330619516966105558694366297827...
		

Crossrefs

Cf. A006890.

Programs

  • Mathematica
    RealDigits[Sqrt[(137 - 1/(57 + Sqrt[Pi]/10))/(2 Pi)], 10, 110][[1]]
  • PARI
    sqrt((137 - 1/(57 + sqrt(Pi)/10))/(2*Pi)) \\ G. C. Greubel, Jan 13 2017

A101419 Decimal expansion of d - log(d-e) where d is Feigenbaum's bifurcation velocity constant (A006890, delta constant) and e is Euler's constant.

Original entry on oeis.org

4, 0, 0, 0, 9, 0, 0, 6, 6, 5, 3, 5, 2, 9, 9, 1, 0, 0, 4, 8, 0, 9, 6, 2, 6, 0, 2, 4, 2, 2, 0, 2, 4, 9, 5, 7, 7, 5, 9, 5, 3, 0, 3, 2, 2, 0, 8, 2, 7, 9, 0, 8, 8, 0, 0, 9, 4, 0, 5, 3, 9, 9, 7, 6, 8, 9, 4, 8, 6, 9, 2, 0, 5, 9, 3, 9, 7, 2, 4, 6, 9, 6, 2, 5, 4, 7, 7, 8, 9, 6, 4, 0, 4, 4, 3, 9, 7, 0, 3, 0, 8, 0, 7, 7, 5
Offset: 1

Views

Author

Gerald McGarvey, Jan 16 2005

Keywords

Comments

From Plouffe's Inverter: log(s)^2 * a^2 * sin(1)^1 = 4.000900694855076... where s is Sierpinski's constant (A062089) and a is Feigenbaum's reduction parameter (A006891, alpha constant). 20 + Pi - exp(Pi) = .00090002081...

Examples

			4.00090066535299100480962602422024957759530322082790880094053997689...
		

Crossrefs

A102819 Decimal expansion of (Gamma(delta)/delta)^2 where delta is the Feigenbaum bifurcation velocity constant (A006890).

Original entry on oeis.org

9, 9, 9, 9, 3, 3, 6, 7, 3, 1, 3, 3, 2, 0, 1, 6, 7, 4, 0, 2, 2, 4, 9, 5, 5, 3, 6, 8, 8, 2, 7, 8, 6, 4, 9, 5, 2, 6, 6, 5, 5, 8, 2, 5, 4, 4, 2, 5, 8, 8, 7, 9, 2, 1, 2, 8, 5, 7, 6, 8, 6, 6, 8, 0, 4, 7, 5, 1, 5, 1, 4, 6, 2, 0, 4, 1, 0, 5, 2, 4, 8, 6, 5, 4, 6, 0, 1, 9, 7, 5, 2, 7, 1, 6, 7, 5, 0, 2, 8, 4, 7, 0, 3, 1, 7
Offset: 1

Views

Author

Gerald McGarvey, Feb 26 2005

Keywords

Comments

Let c be this constant, then c - 30*gamma^2 = .0039990171004565...

Examples

			9.999336731332016740224955368827864952665582544...
		

Crossrefs

Cf. A006890.

Programs

  • Mathematica
    Set delta then RealDigits[(Gamma[delta]/delta)^2, 10, 110][[1]]

A069261 Denominators of the Egyptian fraction for the fractional part of Feigenbaum's constant, 4.6692...

Original entry on oeis.org

2, 6, 395, 303319, 131209492876, 45596605913248081159007, 34243827483200809826686815883136413405197711755, 111445370519459209554489628949586784217535791333333948765270067675689059510906528783799426730444
Offset: 1

Views

Author

Christopher Lund (clund(AT)san.rr.com), Apr 14 2002

Keywords

Comments

The next term in the series, a(9), is ~ 10^190.
The sequence gives the denominators for the fractional part of delta only. One could prefix four 1's in order to get (sum of reciprocals) = delta.

Crossrefs

Cf. A006890 (Feigenbaum's constant), A069544 (continued fraction).

Programs

  • PARI
    t=delta-4/*from A006890, or use: t=contfracpnqn(A069544); t[1,1]/t[2,1]*/; for(i=1,8,print1(1\t+1",");t-=1/(1\t+1)) \\ Requires delta to 93 decimals or A069544 to 90 terms (up to [...,1,1,4]) to get a(7) correctly, 180 terms for a(8). - M. F. Hasler, Apr 30 2018

Formula

a(n) = ceiling(1/(delta - 4 - Sum_{0 < i < n} 1/a(i))) is the smallest integer such that 4 + Sum_{i=1..n} 1/a(i) < delta = 4.6620... - M. F. Hasler, Apr 30 2018

Extensions

Edited by M. F. Hasler, Apr 30 2018

A006891 Decimal expansion of Feigenbaum reduction parameter.

Original entry on oeis.org

2, 5, 0, 2, 9, 0, 7, 8, 7, 5, 0, 9, 5, 8, 9, 2, 8, 2, 2, 2, 8, 3, 9, 0, 2, 8, 7, 3, 2, 1, 8, 2, 1, 5, 7, 8, 6, 3, 8, 1, 2, 7, 1, 3, 7, 6, 7, 2, 7, 1, 4, 9, 9, 7, 7, 3, 3, 6, 1, 9, 2, 0, 5, 6, 7, 7, 9, 2, 3, 5, 4, 6, 3, 1, 7, 9, 5, 9, 0, 2, 0, 6, 7, 0, 3, 2, 9, 9, 6, 4, 9, 7, 4, 6, 4, 3, 3, 8, 3, 4, 1, 2, 9, 5, 9
Offset: 1

Views

Author

Keywords

Examples

			2.502907875095892822283902873218215786381271376727149977336192056779235...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 24.
  • S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, pp. 65-76
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006890 (Feigenbaum bifurcation velocity), A159767 (continued fraction).

Extensions

More terms from Simon Plouffe, Jan 06 2002

A069544 Continued fraction for Feigenbaum's constant - 4 = 0.6692...

Original entry on oeis.org

1, 2, 43, 2, 163, 2, 3, 1, 1, 2, 5, 1, 2, 3, 80, 2, 5, 2, 1, 1, 1, 33, 1, 1, 53, 1, 1, 1, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 239, 1, 3, 31, 1, 1, 11, 1, 13, 123, 2, 2, 2, 2, 13, 15, 1, 2, 3, 3, 1, 3, 1, 1, 6, 1, 3, 1, 1, 13, 8, 1, 7, 1, 2, 1, 8, 7, 1, 17, 1, 6, 1, 1, 3, 1, 1, 13, 1, 1, 4, 2, 9, 124
Offset: 0

Views

Author

Christopher Lund (clund(AT)san.rr.com), Apr 17 2002

Keywords

Comments

This sequence should have offset 1, since the first term already corresponds to the fractional and not to the integer part. See A159766 for a better variant. - M. F. Hasler, Apr 30 2018

Crossrefs

Cf. A159766 (continued fraction of delta), A006890 (decimal expansion).

Programs

  • PARI
    default(realprecision,999);{/*paste here delta=... from the Broadhurst link*/};contfrac(delta)[^1] \\ M. F. Hasler, Apr 30 2018

Formula

delta - 4 = 1/( 1 + 1/( 2 + 1/( 43 + 1/( 2 + 1/( 163 + ... ))))) = 0.66920160910... - M. F. Hasler, Apr 30 2018

A108952 Decimal expansion of 1/delta, where delta = Feigenbaum constant.

Original entry on oeis.org

2, 1, 4, 1, 6, 9, 3, 7, 7, 0, 6, 2, 3, 2, 6, 4, 9, 2, 4, 7, 8, 9, 3, 4, 8, 1, 8, 8, 9, 3, 1, 6, 1, 7, 8, 3, 4, 1, 3, 8, 0, 9, 0, 1, 5, 6, 5, 9, 0, 4, 5, 4, 4, 3, 5, 0, 0, 1, 8, 1, 4, 5, 7, 1, 9, 1, 6, 6, 7, 7, 3, 6, 1, 8, 1, 1, 3, 9, 2, 7, 9, 7, 9, 8, 7, 0, 3, 5, 3, 3, 8, 7, 1, 3, 8, 9, 8, 4, 0, 0, 6, 2, 5, 9
Offset: 0

Views

Author

Lekraj Beedassy, Jul 21 2005

Keywords

Comments

In a dynamical system exhibiting period-doubling cascades,1/delta is the limiting ratio by which the nonlinear parameter's range of stable values shrinks after each successive onset of period-doubling.

Examples

			1/delta=0.21416937706232649247893481889316178341380
		

Crossrefs

Cf. A006890.

Extensions

Removed leading zero and adjusted offset - R. J. Mathar, Feb 06 2009
Showing 1-10 of 15 results. Next