cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A159767 Continued fraction expansion of A006891.

Original entry on oeis.org

2, 1, 1, 85, 2, 8, 1, 10, 16, 3, 8, 9, 2, 1, 40, 1, 2, 3, 2, 2, 1, 17, 1, 1, 5, 3, 2, 6, 3, 5, 1, 1, 3, 3, 15, 3, 1, 1, 7, 2, 3, 1, 7, 2, 1, 55, 1, 1, 1, 1, 4, 9, 1, 2, 1, 36, 1, 5, 10, 1, 1, 2, 1, 4, 1, 4, 5, 5, 1, 1, 130, 1, 3, 1, 1, 2, 1, 3, 1, 3, 2, 3, 2, 2, 547, 9, 18, 3, 1, 4, 2, 1, 1, 2, 2, 2, 1, 6, 1
Offset: 0

Views

Author

Harry J. Smith, Apr 21 2009

Keywords

Comments

Feigenbaum bifurcation velocity alpha.

Examples

			-alpha = 2.50290787509589282... = 2 + 1/(1 + 1/(1 + 1/(85 + 1/(2 + ...))))
		

Programs

  • Mathematica
    (* assign to 'x' the Feigenbaum bifurcation velocity alpha *); ContinuedFraction[ x, 100] (* Robert G. Wilson v, May 31 2009 *)
  • PARI
    { default(realprecision,1019); alpha=-2.\
    5029078750958928222839028732182157863812713767271499773361920567\
    7923546317959020670329964974643383412959523186999585472394218237\
    7785445179272863314993372578112163594879503744781260997380598671\
    2397117373289276654044010306698313834600094139322364490657889951\
    2205843172507873377463087853424285351988587500042358246918740820\
    4281700901714823051821621619413199856066129382742649709844084470\
    1008054549677936760888126446406885181552709324007542506497157047\
    0475419932831783645332562415378693957125097066387979492654623137\
    6745918909813116752434221110130913127837160951158341230841503716\
    4997020224681219644081216686527458043026245782561067150138521821\
    6449532543349873487413352795815351016583605455763513276501810781\
    1948369459574850237398235452625632779475397269902012891516645793\
    9420198920248803394051699686551494477396533876979741232354061781\
    9896112494095990353128997733611849847377946108428833293833903950\
    9008914086351525626803381414669279913310743349705143545201344643\
    4264752001621384610729922641994332772918977769053802596851; x=contfrac(-alpha); for (n=1, 996, write("b159767.txt", n-1, " ", x[n])); } (End)

Extensions

Old PARI program deleted by Harry J. Smith, May 19 2009

A006890 Decimal expansion of Feigenbaum bifurcation velocity.

Original entry on oeis.org

4, 6, 6, 9, 2, 0, 1, 6, 0, 9, 1, 0, 2, 9, 9, 0, 6, 7, 1, 8, 5, 3, 2, 0, 3, 8, 2, 0, 4, 6, 6, 2, 0, 1, 6, 1, 7, 2, 5, 8, 1, 8, 5, 5, 7, 7, 4, 7, 5, 7, 6, 8, 6, 3, 2, 7, 4, 5, 6, 5, 1, 3, 4, 3, 0, 0, 4, 1, 3, 4, 3, 3, 0, 2, 1, 1, 3, 1, 4, 7, 3, 7, 1, 3, 8, 6, 8, 9, 7, 4, 4, 0, 2, 3, 9, 4, 8, 0, 1, 3, 8, 1, 7, 1, 6
Offset: 1

Views

Author

Keywords

Comments

"... These are related to properties of dynamical systems with 'period-doubling' oscillations. The ratio of successive differences between period-doubling bifurcation parameters approaches the number 4.669... Period doubling has been discovered in many physical systems before they enter the chaotic regime. Feigenbaum numbers have not been proved to be transcendental but are generally believed to be. ..." [Pickover]
The Feigenbaum delta constant is the convergence ratio {g(k)-g(k-1)}/{g(k+1)-g(k)} of successive period-doubling thresholds g(k) in the continuous map x(n+1)=f(x(n),g) of an interval onto itself. - Lekraj Beedassy, Jan 07 2005
The above statement is only valid for functions f satisfying some properties, e.g., having a single locally quadratic maximum. See, e.g., the MathWorld link for more details. - M. F. Hasler, May 01 2018
Named after the American mathematical physicist Mitchell Jay Feigenbaum (1944-2019). - Amiram Eldar, Jun 16 2021

Examples

			4.669201609102990671853203820466201617258185577475768632745651343004134...
		

References

  • Michael F. Barnsley, Fractals Everywhere, New Edition, Prof. of Math., Australian National University, Dover Publications, Inc., Mineola, NY, 2012, page 314.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 24, 208.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, pp. 65-76
  • Clifford A. Pickover, (1993) 'The fifteen most famous transcendental numbers.' "Journal of Recreational Mathematics," 25(1):12.
  • Clifford A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Chapter 44, 'The 15 Most Famous Transcendental Numbers,' Oxford University Press, Oxford, England, 2000, pages 103 - 106.
  • Clifford A. Pickover, The Math Book, Sterling, NY, 2009; see p. 462.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Ian Stewart, Nature's Numbers, Chapter 8, Do Dice Play God?, Weidenfeld & Nicolson, 1995.

Crossrefs

Cf. A159766 and A069544 (continued fraction), A069261 (Egyptian fraction), A108952 (1/delta), A102817 (Gamma(delta^2)).
Cf. A006891 (Feigenbaum reduction parameter), A218453.

Extensions

Additional comments from Robert G. Wilson v, Dec 29 2000

A103546 Decimal expansion of the negated value of the smallest real root of the quintic equation x^5 + 2*x^4 - 2*x^3 - x^2 + 2*x -1 = 0.

Original entry on oeis.org

2, 4, 8, 6, 3, 4, 3, 7, 6, 4, 9, 5, 9, 0, 7, 9, 6, 6, 5, 2, 6, 7, 1, 9, 5, 3, 3, 0, 9, 7, 0, 7, 2, 2, 1, 2, 0, 1, 4, 0, 9, 0, 3, 8, 5, 2, 5, 9, 2, 7, 0, 5, 8, 1, 9, 7, 6, 4, 9, 9, 4, 0, 3, 3, 2, 9, 9, 1, 1, 1, 8, 5, 4, 0, 0, 1, 1, 4, 7, 3, 0, 5, 5, 1, 5, 5, 9, 0, 9, 1, 0, 4, 6, 9, 2, 8, 0, 8, 0, 1, 7, 2, 3, 1, 7
Offset: 1

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Mar 23 2005

Keywords

Comments

This is an approximation to the Feigenbaum reduction parameter.
The other two real roots are 0.76660865407289... and -1.16317291980104...

Examples

			The real roots are (roughly) -2.486343765, -1.163172920, 0.7666086541.
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ FindRoot[x^5 + 2x^4 - 2x^3 - x^2 + 2x - 1 == 0, {x, -3}, WorkingPrecision -> 2^7][[1, 2]]][[1]] (* Robert G. Wilson v, Mar 26 2005 *)
    Root[#^5 + 2#^4 - 2#^3 - #^2 + 2# - 1&, 1] // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Feb 27 2013 *)
  • PARI
    polrootsreal(x^5 - 2*x^4 - 2*x^3 + x^2 + 2*x + 1)[3] \\ Charles R Greathouse IV, Apr 14 2014

A102817 Decimal expansion of Gamma(delta)^2 where delta is the Feigenbaum bifurcation velocity constant (A006890).

Original entry on oeis.org

2, 1, 7, 9, 9, 9, 9, 7, 6, 4, 4, 9, 9, 9, 8, 8, 1, 4, 6, 8, 6, 2, 8, 8, 1, 3, 9, 5, 7, 7, 9, 3, 6, 0, 9, 8, 9, 0, 7, 2, 6, 7, 9, 7, 8, 9, 0, 9, 7, 3, 0, 0, 5, 6, 5, 4, 8, 3, 2, 8, 8, 5, 2, 1, 2, 2, 4, 0, 4, 2, 3, 7, 7, 2, 0, 9, 6, 4, 2, 6, 1, 4, 9, 8, 3, 9, 2, 3, 1, 1, 2, 6, 8, 1, 5, 0, 7, 1, 6, 5, 3, 3, 0, 8, 6
Offset: 3

Views

Author

Gerald McGarvey, Feb 26 2005

Keywords

Comments

Let x be this constant, then Integral_{t=1..x} sin(t)/sqrt(t) dt = 0.655555692248871113068...
delta^2 = 21.8014436664499573..., (delta/Gamma(delta))^2 = 0.10000663312663433933000349...
If s is solution of Gamma(s) - sqrt(218) = 0 then 1/((s - delta)*Gamma(delta)^6) = 2.5555951358396... whereas a^(Pi/4) = 2.055596478435... where a is Feigenbaum alpha constant (A006891), the difference = 0.4999986574... ~ 1/(2 + 10^-5.27)
10*cos(Gamma(delta)^2) + Pi = -0.199999019922688714710053...

Examples

			217.99997644999881468628813957793609890726797890973...
		

Crossrefs

Programs

  • Mathematica
    Set delta then RealDigits[Gamma[delta]^2, 10, 110][[1]]
  • PARI
    acos(Pi/10+.0199999019922688714710053)+69*Pi \\ Yields ~ 30 digits. Using (2e5-1)/(1e7-1) yields ~ 15 digits. For a better value use, e.g., delta from the Broadhurst link. - M. F. Hasler, Apr 30 2018

A218453 Decimal expansion of the Myrberg point.

Original entry on oeis.org

1, 4, 0, 1, 1, 5, 5, 1, 8, 9, 0, 9, 2, 0, 5, 0, 6, 0, 0, 5, 2, 3, 8, 2, 6, 7, 8, 7, 8, 9, 3, 8, 6, 1, 2, 9, 2, 2, 2, 6, 3, 0, 8, 0, 4, 3, 3, 9, 7, 3, 1, 9, 6, 0, 8, 9, 3, 7, 2, 6, 1, 4, 9, 6, 6
Offset: 1

Views

Author

Michael Barnsley (Michael.Barnsley(AT)anu.edu.au) and Robert G. Wilson v, Oct 28 2012

Keywords

Comments

"3.3 The sequence of bubbles {B_n}_{n=0...oo} in exercise 3.2 converges to the 'Myreberg point', lambda = 1.40115...." [Barnsley, 2012, p.314]
[Author M. Barnsley consistently spells incorrectly "Myreberg" the name of Pekka J. Myrberg (1892-1976). We leave the original spelling in this citation to improve search results for this phrase. - M. F. Hasler, May 01 2018]

Examples

			1.4011551890920506005238267878938612922263...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.8.3, p. 439.

Crossrefs

Extensions

More terms from Joerg Arndt, Oct 31 2012
Removed the terms given Oct 31 2012 (these corresponded to the fixed point of f^(2^24) on the real axis). - Joerg Arndt, Jul 17 2016
More terms from Michael Lontke, Irena Rubtsova, and Joerg Arndt, Jan 16 2017

A101419 Decimal expansion of d - log(d-e) where d is Feigenbaum's bifurcation velocity constant (A006890, delta constant) and e is Euler's constant.

Original entry on oeis.org

4, 0, 0, 0, 9, 0, 0, 6, 6, 5, 3, 5, 2, 9, 9, 1, 0, 0, 4, 8, 0, 9, 6, 2, 6, 0, 2, 4, 2, 2, 0, 2, 4, 9, 5, 7, 7, 5, 9, 5, 3, 0, 3, 2, 2, 0, 8, 2, 7, 9, 0, 8, 8, 0, 0, 9, 4, 0, 5, 3, 9, 9, 7, 6, 8, 9, 4, 8, 6, 9, 2, 0, 5, 9, 3, 9, 7, 2, 4, 6, 9, 6, 2, 5, 4, 7, 7, 8, 9, 6, 4, 0, 4, 4, 3, 9, 7, 0, 3, 0, 8, 0, 7, 7, 5
Offset: 1

Views

Author

Gerald McGarvey, Jan 16 2005

Keywords

Comments

From Plouffe's Inverter: log(s)^2 * a^2 * sin(1)^1 = 4.000900694855076... where s is Sierpinski's constant (A062089) and a is Feigenbaum's reduction parameter (A006891, alpha constant). 20 + Pi - exp(Pi) = .00090002081...

Examples

			4.00090066535299100480962602422024957759530322082790880094053997689...
		

Crossrefs

A195102 Decimal expansion of the reduction parameter for the biquadratic solution of the Feigenbaum-Cvitanovic equation.

Original entry on oeis.org

1, 6, 9, 0, 3, 0, 2, 9, 7, 1, 4, 0, 5, 2, 4, 4, 8, 5, 3, 3, 4, 3, 7, 8, 0, 1, 5, 0, 3, 2, 4, 1, 6, 1, 3, 4, 8, 2, 2, 8, 2, 7, 8, 0, 5, 9, 7, 0, 9
Offset: 1

Views

Author

R. J. Mathar, Sep 09 2011

Keywords

Comments

The expansion which starts quadratically 1+O(z^2) near the origin is in A006891. The constant here refers to the solution which starts 1+O(z^4) near z=0.

Examples

			Equals 1.690302971405244853...
		

Crossrefs

Cf. A006891.

A306963 Decimal expansion of Feigenbaum's constant 0.399535...

Original entry on oeis.org

3, 9, 9, 5, 3, 5, 2, 8, 0, 5, 2, 3, 1, 3, 4, 4, 8, 9, 8, 5, 7, 5, 8, 0, 4, 6, 8, 6, 3, 3, 6, 9, 3, 7, 1, 9, 4, 3, 3, 5, 4, 4, 2, 8, 0, 4, 6, 6, 9, 5, 2, 7, 2, 7, 5, 1, 7, 0, 7, 3, 0, 4, 4, 9, 1, 2, 4, 3, 8, 0, 1, 6, 6, 0, 8, 8, 3, 8, 0, 4, 2, 9, 8, 1, 8, 4, 4, 5, 9, 4, 8, 7, 4, 1, 8, 1, 2, 6, 6, 8
Offset: 0

Views

Author

N. J. A. Sloane, Mar 18 2019

Keywords

Examples

			0.3995352805231344898575...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.9, pp. 66-67.

Crossrefs

Cf. A006890, A006891, A119277, etc.

Formula

Equals 1/A006891. - Stefano Spezia, Nov 23 2024

Extensions

More terms from Dudko and Sutherland (2020) added by Amiram Eldar, May 15 2021
a(22)-a(99) from Stefano Spezia, Nov 23 2024
Showing 1-8 of 8 results.