A069621
a(1) = 9; a(2n) = smallest prime that is a right concatenation of a(2n-1) and a number with no insignificant zeros and a(2n+1) = smallest prime ending in ( the least significant digits) a(2n). Alternate left and right concatenation yielding primes.
Original entry on oeis.org
9, 97, 197, 1973, 31973, 319733, 3319733, 331973311, 6331973311, 633197331131, 5633197331131, 563319733113127, 6563319733113127, 65633197331131279, 3465633197331131279, 346563319733113127933, 18346563319733113127933
Offset: 1
a(4) = 1973 starting with a(3) =197 and a(5) = 31973 ending in a(4) = 1973.
Cf.
A053582,
A069605,
A069606,
A069607,
A069608,
A069609,
A069610,
A069611,
A069613,
A069614,
A069615,
A069616,
A069617,
A069618,
A069619,
A069620.
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 30 2003
A069628
a(1) = 1; a(2n) = smallest prime starting (most significant digits) with a(2n-1). a(2n+1) = smallest prime ending (least significant digits) in a(2n).
Original entry on oeis.org
1, 11, 211, 2111, 22111, 2211109, 92211109, 9221110901, 29221110901, 2922111090137, 32922111090137, 3292211109013747, 73292211109013747, 7329221110901374771, 157329221110901374771, 15732922111090137477101
Offset: 1
-
a[n_] := (j = ToString[n]; l = {"1", "3", "7", "9", "01", "03", "07", "09"}; k = 1; While[p = ToExpression[ StringJoin[j, ToString[l[[k]] ]]]; k < 9 && ! PrimeQ[p], k++ ]; If[k < 9, Return[p]]; i = IntegerDigits[n]; k = 11; While[p = FromDigits[Join[i, IntegerDigits[k]]]; ! PrimeQ[p], k++ ]; Return[p]); b[n_] := (i = IntegerDigits[n]; k = 1; While[p = FromDigits[ Join[ IntegerDigits[k], i]]; !PrimeQ[p], k++ ]; Return[p]); f[1] = 1; f[n_] := If[ EvenQ[n], a[f[n - 1]], b[f[n - 1]]]; Table[ f[n], {n, 1, 18}]
A069636
a(1) = 9; a(2n) = smallest prime starting (most significant digits) with a(2n-1). a(2n+1) = smallest prime ending (least significant digits)in a(2n).
Original entry on oeis.org
9, 97, 197, 1973, 31973, 319733, 3319733, 331973303, 5331973303, 533197330313, 9533197330313, 953319733031321, 3953319733031321, 395331973303132171, 12395331973303132171, 1239533197330313217121, 391239533197330313217121
Offset: 1
-
A[1]:= 9:
for n from 2 to 30 do
if n::even then
for d from 1 do
x:= nextprime(A[n-1]*10^d);
if x < (A[n-1]+1)*10^d then A[n]:= x; break fi
od
else
d:=ilog10(A[n-1])+1;
for x from A[n-1]+10^d by 10^d do
if isprime(x) then A[n]:= x; break fi
od
fi
od:
seq(A[i],i=1..30); # Robert Israel, Nov 11 2020
A069613
a(1) = 1; a(2n) is smallest prime starting with a(2n-1) and a number with no insignificant zeros, and a(2n+1) is smallest prime ending in a(2n-1). Alternate left and right concatenation yielding primes.
Original entry on oeis.org
1, 11, 211, 2111, 22111, 2211127, 12211127, 122111279, 14122111279, 1412211127927, 211412211127927, 21141221112792721, 1321141221112792721, 132114122111279272169, 27132114122111279272169, 2713211412211127927216947
Offset: 1
a(4) = 2111 starting with a(3) =211 and a(5) = 22111 ending in a(4) = 2111.
A069615
a(1) = 3; a(2n) = smallest prime starting (in the most significant digits) with a(2n-1) (i.e., as a right concatenation of a(2n-1) and a number with no insignificant zeros); a(2n+1) = smallest prime ending in (the least significant digits) a(2n-1). Alternate left and right concatenation yielding primes.
Original entry on oeis.org
3, 31, 131, 1319, 21319, 213193, 12213193, 122131939, 1122131939, 112213193957, 27112213193957, 271122131939573, 3271122131939573, 327112213193957339, 2327112213193957339, 232711221319395733969, 13232711221319395733969
Offset: 1
a(4) = 1319 starting with a(3) = 131 and a(5) = 21319 ending in a(4) = 1319.
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 30 2003
A069616
a(1) = 4; a(2n) = smallest prime that is a right concatenation of a(2n-1) and a number with no insignificant zeros and a(2n+1) = smallest prime ending in ( the least significant digits) a(2n-1). Alternate left and right concatenation yielding primes.
Original entry on oeis.org
4, 41, 241, 2411, 32411, 324113, 6324113, 63241133, 1563241133, 15632411339, 815632411339, 81563241133919, 281563241133919, 2815632411339191, 322815632411339191, 32281563241133919151, 432281563241133919151
Offset: 1
a(4) = 2411 starting with a(3) =241 and a(5) = 32411 ending in a(4) = 2411.
Cf.
A053582,
A069605,
A069606,
A069607,
A069608,
A069609,
A069610,
A069611,
A069613,
A069614,
A069615.
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 30 2003
A069617
a(1) = 5; a(2n) = smallest prime that is a right concatenation of a(2n-1) and a number with no insignificant zeros and a(2n+1) = smallest prime ending in ( the least significant digits) a(2n-1). Alternate left and right concatenation yielding primes.
Original entry on oeis.org
5, 53, 353, 3533, 33533, 3353321, 113353321, 1133533213, 101133533213, 10113353321311, 310113353321311, 3101133533213117, 143101133533213117, 14310113353321311739, 314310113353321311739, 314310113353321311739103
Offset: 1
a(4) = 3533 starting with a(3) = 353 and a(5) = 33533 ending in a(4) = 3533.
Cf.
A053582,
A069605,
A069606,
A069607,
A069608,
A069609,
A069610,
A069611,
A069613,
A069614,
A069615,
A069616.
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 30 2003
A069618
a(1) = 6; a(2n) = smallest prime that is a right concatenation of a(2n-1) and a number with no insignificant zeros and a(2n+1) = smallest prime ending in ( the least significant digits) a(2n-1). Alternate left and right concatenation yielding primes.
Original entry on oeis.org
6, 61, 461, 46133, 246133, 2461337, 22461337, 224613371, 12224613371, 1222461337117, 151222461337117, 15122246133711733, 615122246133711733, 615122246133711733213, 9615122246133711733213, 961512224613371173321349
Offset: 1
a(4) = 46133 starting with a(3) = 461 and a(5) = 246133 in a(4) = 46133.
Cf.
A053582,
A069605,
A069606,
A069607,
A069608,
A069609,
A069610,
A069611,
A069613,
A069614,
A069615,
A069616,
A069617.
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 30 2003
A069619
a(1) = 7; a(2n) = smallest prime that is a right concatenation of a(2n-1) and a number with no insignificant zeros and a(2n+1) = smallest prime ending in ( the least significant digits) a(2n-1). Alternate left and right concatenation yielding primes.
Original entry on oeis.org
7, 71, 271, 2711, 52711, 5271121, 135271121, 1352711219, 271352711219, 27135271121911, 1227135271121911, 122713527112191161, 20122713527112191161, 20122713527112191161109, 2720122713527112191161109
Offset: 1
a(4) = 2711 starting with a(3) = 271 and a(5) = 52711 in a(4) = 2711.
Cf.
A053582,
A069605,
A069606,
A069607,
A069608,
A069609,
A069610,
A069611,
A069613,
A069614,
A069615,
A069616,
A069617,
A069618.
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 30 2003
A069620
a(1) = 8; a(2n) = smallest prime that is a right concatenation of a(2n-1) and a number with no insignificant zeros and a(2n+1) = smallest prime ending in ( the least significant digits) a(2n-1). Alternate left and right concatenation yielding primes.
Original entry on oeis.org
8, 83, 283, 2833, 32833, 328331, 2328331, 232833127, 3232833127, 323283312749, 14323283312749, 1432328331274927, 281432328331274927, 28143232833127492741, 3628143232833127492741, 36281432328331274927411
Offset: 1
a(4) = 2833 starting with a(3) = 283 and a(5) = 32833 ending in a(4) = 2833.
Cf.
A053582,
A069605,
A069606,
A069607,
A069608,
A069609,
A069610,
A069611,
A069613,
A069614,
A069615,
A069616,
A069617,
A069618,
A069619.
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 30 2003
Showing 1-10 of 17 results.
Comments