A069656 Perfect powers that can be permuted into another perfect power (in base 10).
125, 144, 169, 196, 243, 256, 324, 441, 512, 625, 961, 1024, 1089, 1296, 1369, 1728, 1764, 1936, 2187, 2197, 2401, 2916, 4096, 4761, 7921, 9216, 9261, 9604, 9801, 10201, 10404, 10609, 11236, 11664, 12100, 12544, 12769, 13689, 14400, 14884, 15129, 16384, 16641, 16807
Offset: 1
Examples
1024 = 2^10 and a digit permutation gives 2401 = 7^4. 1369 = 37^2 and a digit permutation gives 1936 = 44^2
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A001597.
Programs
-
PARI
upto(n) = {l = List(); res = List(); for(i = 2, sqrtint(n), if(!ispower(i), for(j = 2, logint(n, i), c = i^j; listput(l, [freqdigits(c), c]); ) ) ); listsort(l, 1); for(i = 1, #l - 1, if(l[i][1] == l[i+1][1], k = i+1; while(k <= #l && l[i][1] == l[k][1], k++; ); for(j = i, k-1, listput(res, l[j][2]) ); ) ); listsort(res, 1); res } addhelp(freqdigits, "Gives a vector that lists for every digit how often it occurs.") freqdigits(n) = {my(v=vector(10), d=digits(n)); for(i=1,#d,v[d[i]+1]++);v } \\ David A. Corneth, Aug 20 2020
Extensions
Corrected and extended by Bodo Zinser, Apr 03 2005
Better definition from Jon Wild, Aug 20 2020
More terms from David A. Corneth, Aug 20 2020