A069675 Primes all of whose internal digits (if any) are 0.
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 307, 401, 409, 503, 509, 601, 607, 701, 709, 809, 907, 1009, 2003, 3001, 4001, 4003, 4007, 5003, 5009, 6007, 7001, 8009, 9001, 9007, 10007, 10009
Offset: 1
Examples
4001 is in the sequence because it is prime and all the internal digits (the digits between 4 and 1) are zero. - _Michael B. Porter_, Aug 11 2016
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..263
- Makoto Kamada, Prime numbers of the form k*10^n+1
- Seth A. Troisi, Plot of log(log(a(n))) for 1 <= n <= 434
- Seth A. Troisi, a(n) for n = 1 .. 434, a(n) in form "a * 10 ^ d + b"
Programs
-
Maple
A := {}: for n to 1000 do p := ithprime(n): d := convert(p, base, 10): s := 0: for m from 2 to nops(d)-1 do s := s+d[m]: end do if s = 0 then A := `union`(A, {p}) end if: end do: A := A # César Eliud Lozada, Sep 04 2012 select(isprime, [$1..9, seq(seq(seq(10^d*a+b, b=1..9),a=1..9), d=1..10)]); # Robert Israel, Aug 18 2015
-
Mathematica
Select[Prime[Range[1, 100000]], IntegerLength[#] < 3 || Union@Rest@Most@IntegerDigits[#, 10] == {0} &] (* Harlan J. Brothers, Aug 17 2015 *) Select[Join[Range[1, 99], Flatten[Table[a*10^d + b, {d, 2, 50}, {a, 1, 9}, {b, 1, 9}]]], PrimeQ[#] &] (* Seth A. Troisi, Aug 03 2016 *)
-
PARI
go(n)=my(v=List(primes(4)),t); for(d=1,n-1, for(i=1,9, forstep(j=1,9,[2,4,2], if(isprime(t=10^d*i+j), listput(v,t))))); Vec(v) \\ Charles R Greathouse IV, Sep 14 2015
-
Python
from sympy import isprime print([2, 3, 5, 7] + list(filter(isprime, (a*10**d+b for d in range(1, 101) for a in range(1, 10) for b in [1, 3, 7, 9])))) # Michael S. Branicky, May 08 2021
Formula
a(n) >> 10^(n/24). - Charles R Greathouse IV, Sep 14 2015
Extensions
Offset corrected and name changed by Arkadiusz Wesolowski, Sep 07 2011
Comments