cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069687 Primes that yield another prime on placing a 1 on both sides (as leading and trailing digits).

Original entry on oeis.org

3, 5, 17, 23, 29, 47, 53, 83, 107, 113, 131, 149, 173, 197, 239, 251, 317, 359, 383, 401, 443, 503, 509, 599, 641, 683, 701, 719, 743, 797, 821, 947, 953, 1031, 1049, 1103, 1109, 1187, 1229, 1277, 1283, 1301, 1373, 1583, 1613, 1619, 1637, 1733, 1847, 1889
Offset: 1

Views

Author

Amarnath Murthy, Apr 06 2002

Keywords

Examples

			239 belongs to this sequence as 12391 is also a prime.
947 and 19471 are both primes ==> 947 is in the sequence. [From _José María Grau Ribas_, Jan 22 2012]
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local p;
          p:= `if`(n=1, 1, a(n-1));
          do p:= nextprime(p);
             if isprime(parse(cat(1, p, 1))) then break fi
          od; p
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, May 18 2012
  • Mathematica
    Select[ Range[2000], PrimeQ[ # ] && PrimeQ[ FromDigits[ Insert[ IntegerDigits[ # ], 1, {{1}, {-1}}]]] &]
    san[i_]:=1+Prime[i]*10+10^(Floor@Log[10,Prime[i]]+2); Prime@Select[Range[1000],PrimeQ@san[#]&]  (* From José María Grau Ribas, Jan 22 2012 *)
    Select[Prime[Range[300]],PrimeQ[FromDigits[Join[{1},IntegerDigits[#],{1}]]]&]  (* Harvey P. Dale, May 18 2012 *)
  • PARI
    forprime( p=1,9999, isprime(10^#Str(p*10)+p*10+1) & print1(p",")) \\ M. F. Hasler, May 18 2012
    
  • PARI
    A069687_vec(Nmax=10^4)=my(p,d=1);vector(Nmax,i,until(isprime((d+p)*10+1), d<(p=nextprime(p+1))&d*=10);p)  \\ M. F. Hasler, May 19 2012

Extensions

Edited and extended by Robert G. Wilson v, May 03 2002
Corrected and edited following suggestions by H. P. Dale and others by M. F. Hasler, May 18 2012