cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A069693 Triangular numbers with either no internal digits or all internal digits are 0.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 300, 406, 703, 903, 3003, 4005, 8001
Offset: 1

Views

Author

Amarnath Murthy, Apr 06 2002

Keywords

Examples

			The internal digits of 3003 are "00", which are both 0. 15 has no internal digits.
		

Crossrefs

Programs

  • Mathematica
    Do[ If[ Union[ Drop[ RotateLeft[ IntegerDigits[n(n + 1)/2]], -2]] == {0}, Print[n(n + 1)/2]], {n, 14, 2 10^6}]

Extensions

Corrected by Sascha Kurz, Jan 02 2003

A069695 Triangular numbers with internal digits 3.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 136, 231, 435, 630, 333336
Offset: 1

Views

Author

Amarnath Murthy, Apr 06 2002

Keywords

Comments

For proof of finiteness see A069693.

Crossrefs

Programs

  • Mathematica
    Do[ If[ Union[ Drop[ RotateLeft[ IntegerDigits[n(n + 1)/2]], -2]] == {3}, Print[n(n + 1)/2]], {n, 14, 2 10^6}]

Extensions

Extended by Robert G. Wilson v, Apr 07 2002

A069694 Triangular numbers with internal digits 2.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 120, 325, 528, 820, 1225
Offset: 1

Views

Author

Amarnath Murthy, Apr 06 2002

Keywords

Comments

For proof of finiteness see A069693.

Crossrefs

Programs

  • Mathematica
    Do[ If[ Union[ Drop[ RotateLeft[ IntegerDigits[n(n + 1)/2]], -2]] == {2}, Print[n(n + 1)/2]], {n, 14, 2 10^6}]

A069696 Triangular numbers with internal digits 4.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 741, 946, 6441, 544446
Offset: 1

Views

Author

Amarnath Murthy, Apr 06 2002

Keywords

Comments

For proof of finiteness see A069693.

Crossrefs

Extensions

Extended by Robert G. Wilson v, Apr 07 2002

A069697 Triangular numbers with internal digits 5.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 153, 253, 351, 2556, 6555
Offset: 1

Views

Author

Amarnath Murthy, Apr 06 2002

Keywords

Comments

For proof of finiteness see A069693.

Crossrefs

Programs

  • Mathematica
    Do[ If[ Union[ Drop[ RotateLeft[ IntegerDigits[n(n + 1)/2]], -2]] == {5}, Print[n(n + 1)/2]], {n, 14, 2 10^6}]
    Select[Accumulate[Range[0,300]],IntegerLength[#]<3||Union[Most[Rest[IntegerDigits[#]]]]=={5}&] (* Harvey P. Dale, Aug 13 2025 *)

Extensions

Extended by Robert G. Wilson v, Apr 07 2002

A069698 Triangular numbers with internal digits 6.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 465, 561, 666, 861, 46665, 5666661
Offset: 1

Views

Author

Amarnath Murthy, Apr 06 2002

Keywords

Comments

For proof of finiteness see A069693.

Crossrefs

Programs

  • Mathematica
    Do[ If[ Union[ Drop[ RotateLeft[ IntegerDigits[n(n + 1)/2]], -2]] == {6}, Print[n(n + 1)/2]], {n, 14, 2 10^6}]

Extensions

Extended by Robert G. Wilson v, Apr 07 2002
Corrected by Mark Hudson (mrmarkhudson(AT)hotmail.com), Aug 25 2004

A069699 Triangular numbers with internal digits 7.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 171, 276, 378, 1770, 2775, 5778, 8778
Offset: 1

Views

Author

Amarnath Murthy, Apr 06 2002

Keywords

Comments

For proof of finiteness see A069693.

Crossrefs

Programs

  • Mathematica
    Do[ If[ Union[ Drop[ RotateLeft[ IntegerDigits[n(n + 1)/2]], -2]] == {6}, Print[n(n + 1)/2]], {n, 14, 2 10^6}]

Extensions

Corrected by Sascha Kurz, Jan 02 2003
Showing 1-7 of 7 results.