cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069728 Number of rooted non-separable Eulerian planar maps with n edges.

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 19, 64, 230, 865, 3364, 13443, 54938, 228749, 967628, 4149024, 18000758, 78905518, 349037335, 1556494270, 6991433386, 31609302688, 143755711433, 657301771172, 3020175361634, 13939605844996, 64604720622719
Offset: 0

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Examples

			A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 6*x^5 + 19*x^6 + 64*x^7 + 230*x^8 + ...
		

Crossrefs

Cf. A000257.

Programs

  • Mathematica
    Flatten[{1, Table[(Sum[(-1)^j*Binomial[2*n + j - 1, j] * Sum[(-1)^k*2^(n - j - k - 1)*Binomial[j, k] * Binomial[2*n, n - j - k - 1], {k, 0, Min[j, n - j - 1]}], {j, 0, n - 1}] - 2*Sum[(-1)^j*Binomial[2*n + j - 1, j] * Sum[(-1)^k*2^(n - j - k - 2) * Binomial[j, k]*Binomial[2*n, n - j - k - 2], {k, 0, Min[j, n - j - 2]}], {j, 0, n - 2}])/n, {n, 1, 30}]}] (* Vaclav Kotesovec, Apr 13 2018 *) (* In the article by Liskovets and Walsh, p. 218, E'ns(n), the factor -2*Sum[...] is missing. *)
  • PARI
    seq(N) = {
      my(x ='x+O('x^N), y=serreverse(x*(1+x/2-x^2/4)^2/(2*(1+x)^2)));
      Vec(1+y/2-y^2/4);
    };
    seq(27) \\ Gheorghe Coserea, Apr 12 2018

Formula

G.f.: y = A(x) satisfies 0 = y^5 - y^4 - 12*x*y^3 + x*(16*x + 11)*y^2 - 8*x^2*y + x^2. - Gheorghe Coserea, Apr 12 2018
a(n) ~ 75*sqrt(65)/(4394*sqrt(Pi)) * n^(-5/2) * (128/25)^n. - Gheorghe Coserea, and Vaclav Kotesovec, Apr 12 2018
A(x) = 1 + serreverse((1+x)^2*(1+12*x-(1-4*x)^(3/2))/(2*(4*x+3)^2)); equivalently, it can be rewritten as A(x) = 1 + serreverse((y-1)*(y^2+y-1)^2/(y^3*(3*y-2)^2)), where y = A000108(x). - Gheorghe Coserea, Apr 14 2018